zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The last possible place of unitarity for certain highest weight modules. (English) Zbl 0478.22007

22E46Semisimple Lie groups and their representations
22E47Representations of Lie and real algebraic groups: algebraic methods
17B35Universal enveloping Lie (super)algebras
32M15Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (analytic spaces)
[1]Dixmier, J.: Algebrès enveloppantes. Paris: Gauthier-Villars 1972
[2]Enright, T.J., Parthasarathy, R.: A proof of a conjecture of Kashiwara and Vergne. Preprint, 1980
[3]Humphreys, J.E.: Introduction to Lie algebras and representation theory Berlin, Heidelberg, New York: Springer 1972
[4]Jakobsen, H.P., Vergne, M.: Restrictions and expansions of holomorphic representations. J. Functional Analysis34, 29-53 (1979) · Zbl 0433.22011 · doi:10.1016/0022-1236(79)90023-5
[5]Jakobsen, H.P.: On singular holomorphic representations. Invent Math.62, 67-78 (1980) · Zbl 0466.22016 · doi:10.1007/BF01391663
[6]Kashiwara, M., Vergne, M.: On the Segal-Shale-Weil repiesentation and harmonic polyncmials. Invent. Math.44, 1-47 (1978) · Zbl 0375.22009 · doi:10.1007/BF01389900
[7]Rossi, H., Vergne, M.: Analytic continuation of the holomorphic discrete series of a semi-simple Lie group. Acta Math.136, 1-59 (1976) · Zbl 0356.32020 · doi:10.1007/BF02392042
[8]Shapovalov, N.N.: On a bilinar form on the universal enveloping algebra of a complex semi-simple Lie algebra. Functional Analysis Appl.6, 307-312 (1972) · Zbl 0283.17001 · doi:10.1007/BF01077650