zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The numerical computation of the confluent hypergeometric function U(a,b,z). (English) Zbl 0489.33001

MSC:
33-04Machine computation, programs (special functions)
33C05Classical hypergeometric functions, 2 F 1
65Q05Numerical methods for functional equations (MSC2000)
65D20Computation of special functions, construction of tables
References:
[1]Abramowitz, M.A., Stegun, I.A.: Handbook of mathematical functions. Nat. Bur. Stand. Appl. Math. Ser55, Washington D.C., 1964
[2]Campbell, J.C.: On Temme’s algorithm for the modified Bessel function of third kind. ACM Trans. Math. Software6, 581-586 (1980) · Zbl 0447.33005 · doi:10.1145/355921.355928
[3]Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Rev.9, 24-82 (1967) · Zbl 0168.15004 · doi:10.1137/1009002
[4]Gautschi, W.: Evaluation of the repeated integrals of the coerror function. ACM Trans. Math. Software3, 240-252 (1977) · Zbl 0363.33001 · doi:10.1145/355744.355748
[5]Olver, F.W.J.: Numerical solution of second-order linear difference equations. J. Res. NBS 71B, Nos.2 and3, 111-129 (1967)
[6]Slater, L.J.: Confluent hypergeometric functions. Cambridge University Press, 1960
[7]Temme, N.M.: Numerical evaluation of functions arising from transformations of formal series. J. Math. Anal. Appl.51, 678-694 (1975a) · Zbl 0335.65007 · doi:10.1016/0022-247X(75)90118-3
[8]Temme, N.M.: On the numerical evaluation of the modified Bessel function of the third kind. J. Comput. Phys.19, 324-337 (1975b) · Zbl 0334.65013 · doi:10.1016/0021-9991(75)90082-0
[9]Temme, N.M.: On the expansion of confluent hypergeometric functions in terms of Bessel functions. J. Comput. Appl. Math.7, 27-32 (1979) · Zbl 0455.33002 · doi:10.1016/0771-050X(81)90004-8
[10]Wimp, J.: On the computation of Tricomi’s ? function. Computing13, 195-203 (1974) · Zbl 0294.65010 · doi:10.1007/BF02241712