zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the flow of a simple fluid in an orthogonal rheometer. (English) Zbl 0513.76002
76A05Non-Newtonian fluids
[1]Maxwell, B., &R. P. Chartoff, Studies of a polymer melt in an orthogonal rheometer.Trans. Soc. Rheol. 9, 41–52 (1965). · doi:10.1122/1.548979
[2]Blyler, L. L., & S. J. Kurtz, Analysis of the Maxwell orthogonal rheometer.J. Appl. Poly. Sci.,11, 127–131.
[3]Bird, R. B., &E. K. Harris, Analysis of steady state shearing and stress relaxation in the Maxwell orthogonal rheometer.A.I. Ch. E. Journ. 14, 758–761 (1968).
[4]Huilgol, R. R., On the properties of the motion with constant stretch history occurring in the Maxwell rheometer.Trans. Soc. Rheol. 13 513–526 (1969). · doi:10.1122/1.549140
[5]Kearsley, E. A., On the flow induced by a Maxwell-Chartoff rheometer.Jour. of Research of the Natl. Bureau of Standards 74c, 19–20 (1970).
[6]Abbot, T. N., &K. Walters, Rheometrical flow systems, Part 2. Theory for the orthogonal rheometer, including an exact solution of the Navier-Stokes equations.J. Fluid. Mech.,40, 205–213 (1970). · Zbl 0184.52102 · doi:10.1017/S0022112070000125
[7]Rajagopal, K. R., &A. S. Gupta, Flow and stability of a second grade fluid between two parallel plates rotating about non-coincident axes.Intl. J. Eng. Science,19, 1401–1409 (1981). · Zbl 0469.76003 · doi:10.1016/0020-7225(81)90037-9
[8]Rajagopal, K. R., The flow of a second order fluid between rotating parallel plates.J. of Non-Newtonian Fluid Mech.,9, 185–190 (1981). · Zbl 0476.76008 · doi:10.1016/0377-0257(87)87015-5
[9]Wang, C.-C., A representation theorem for the constitutive equation of a simple material in motions with constant stretch history.Arch. Rational Mech. Anal.,20, 329–340 (1965).
[10]Noll, W., Motions with constant stretch history.Arch. Rational Mech. Anal.,11, 97–105 (1962). · Zbl 0112.18301 · doi:10.1007/BF00253931
[11]Coleman, B. D., Substantially stagnant motions.Trans. Soc. Rheol.,6, 293–300 (1962). · doi:10.1122/1.548928
[12]Coleman, B. D., Kinematical concepts with applications in the mechanics and thermodynamics of incompressible viscoelastic fluids.Arch. Rational Mech. Anal.,9, 273–300 (1962).
[13]Huilgol, R. R., A class of motions with constant stretch history.Quart. of Appl. Mathematics,29, 1–15 (1971).
[14]Rivlin, R. S., &J. L. Ericksen, Stress-deformation relations for isotropic materials.J. Rational Mech. Anal.,4, 323–425 (1955).
[15]Truesdell, C., &W. Noll, The non-linear field theories of mechanics,Flügge’s Handbuch der Physik, III/3. Berlin-Heidelberg-New York, Springer (1965).
[16]Berker, R., A new solution of the Navier-Stokes equation for the motion of a fluid contained between two parallel planes rotating about the same axis.Archiwum Mechaniki Stosowanej,31, 265–280 (1979).
[17]Rajagopal, K. R., & A. S. Gupta, Flow and stability of second grade fluids between two parallel rotating plates.Archiwum Mechaniki Stosowanej, In Press.
[18]Berker, R., Intégration des équations du mouvement d’un fluide visqueux, incompressible,Handbuch der Physik, VIII/2, Berlin-Göttingen-Heidelberg (1963).
[19]Drouot, R., Sur un cas d’intégration des équations du mouvement d’un fluide incompressible du deuxième ordre,C. R. Acad. Sc. Paris, 265A, 300–304 (1967).
[20]Berker, R., An exact solution of the Navier-Stokes equation, the vortex with curvilinear axis,Intl. J. Eng. Science,20, 217–230 (1982). · Zbl 0487.76039 · doi:10.1016/0020-7225(82)90017-9