zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A classical Diophantine problem and modular forms of weight 3/2. (English) Zbl 0515.10013

11B39Fibonacci and Lucas numbers, etc.
11F27Theta series; Weil representation; theta correspondences
14H52Elliptic curves
[1]Alter, R., Curtz, T.B., Kubota, K.K.: Remarks and results on congruent numbers. Proc. Third Southeastern Conf. on Combinatorics, Graph Theory and Computing 1972, pp. 27-35
[2]Alter, R.: The congruent number problem. Amer. Math. Monthly87, 43-45 (1980) · Zbl 0422.10009 · doi:10.2307/2320381
[3]Birch, B.J., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves II. J. reine angewandte Math.218, 79-108 (1965) · Zbl 0147.02506 · doi:10.1515/crll.1965.218.79
[4]Birch, B.J., Kuyk, W.: Tables on elliptic curves. In: Modular functions of one variable IV. Lecture Notes in Mathematics, vol. 476, pp. 81-144. Berlin-Heidelberg-New York: Springer 1979
[5]Barrucand, P., Cohn, H.: Note on primes of typex 2+32y 2, class number, and residuacity. J. reine angewandte Math.238, 67-70 (1969) · Zbl 0207.36202 · doi:10.1515/crll.1969.238.67
[6]Brown, E.: The class number of Q(-p) , forp?1 (mod 8) a prime. Proc. Amer. Math. Soc.31, 381-383 (1972)
[7]Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math.39, 223-251 (1977) · Zbl 0359.14009 · doi:10.1007/BF01402975
[8]Cohen, H., Oesterlé, J.: Dimension des espaces de formes modulaires. In: Modular functions of one variable VI. Lecture Notes in Mathematics, vol. 627, pp. 69-78. Berlin-Heidelberg-New York: Springer 1977
[9]Dickson, L.E.: History of the theory of numbers II. Carnegie Institution, Washington, DC (1920) (reprinted by Chelsea, 1966)
[10]Flicker, Y.: Automorphic forms on covering groups ofGL(2). Invent. Math.57, 119-182 (1980) · Zbl 0431.10014 · doi:10.1007/BF01390092
[11]Jones, B.W.: The arithmetic theory of quadratic forms. Math. Assoc. of Amer., Baltimore, MD 1950
[12]Lagrange, J.: Thèse d’Etat de l’Université de Reims, 1976
[13]Moreno, C.J.: The higher reciprocity laws: an example. J. Number Theory12, 57-70 (1980) · Zbl 0426.10024 · doi:10.1016/0022-314X(80)90073-6
[14]Pizer, A.: On the 2-part of the class number of imaginary quadratic number fields. J. Number Theory8, 184-192 (1976) · Zbl 0329.12003 · doi:10.1016/0022-314X(76)90100-1
[15]Razar, M.: The nonvanishing ofL(1) for certain elliptic curves with no first descents. Amer. J. Math.96, 104-126 (1974) · Zbl 0296.14015 · doi:10.2307/2373583
[16]Razar, M.: A relation between the two-component of the Tate-Shafarevitch group andL(1) for certain elliptic curves. Amer. J. Math.96, 127-144 (1974) · Zbl 0296.14016 · doi:10.2307/2373584
[17]Serre, J-P., Stark, H.M.: Modular forms of weight 1/2. In: Modular functions of one variable VI. Lecture Notes in Mathematics, vol. 627, pp. 27-68. Berlin-Heidelberg-New York: Springer 1977
[18]Shimura, G.: On modular forms of half-integral weight. Ann. of Math.97, 440-481 (1973) · Zbl 0266.10022 · doi:10.2307/1970831
[19]Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Iwanami Shoten and Princeton University Press 1971
[20]Smith, H.J.: Collected Mathematical Papers, Volume 1, Oxford (1894). (reprinted by Chelsea, 1965)
[21]Stephens, N.M.: Congruence Properties of Congruent numbers. Bull. London Math. Soc. pp. 182-184 (1975)
[22]Tate, J.: The arithmetic of elliptic curves. Invent. Math.23, 179-206 (1974) · Zbl 0296.14018 · doi:10.1007/BF01389745
[23]Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular functions of one variable IV. Lecture Notes in Mathematics, vol. 476, pp. 33-52. Berlin-Heidelberg-New York: Springer 1975
[24]Tate, J.: Number theoretic background. In: Automorphic forms, representations, andL-functions. Proc. Symp. in Pure Math. XXXIII, Part 2, pp. 3-26 (1979)
[25]Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. de Math. pures et appliquées60, (4) 375-484 (1981)
[26]Guy, R.K.: Unsolved problems. Amer. Math. Monthly88, 758-761 (1981) · doi:10.2307/2321478