zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical algorithm for the time fractional Fokker-Planck equation. (English) Zbl 05221351
Summary: Anomalous diffusion is one of the most ubiquitous phenomena in nature, and it is present in a wide variety of physical situations, for instance, transport of fluid in porous media, diffusion of plasma, diffusion at liquid surfaces, etc. The fractional approach proved to be highly effective in a rich variety of scenarios such as continuous time random walk models, generalized Langevin equations, or the generalized master equation. To investigate the subdiffusion of anomalous diffusion, it would be useful to study a time fractional Fokker-Planck equation. In this paper, firstly the time fractional, the sense of Riemann-Liouville derivative, Fokker-Planck equation is transformed into a time fractional ordinary differential equation (FODE) in the sense of Caputo derivative by discretizing the spatial derivatives and using the properties of Riemann-Liouville derivative and Caputo derivative. Then combining the predictor-corrector approach with the method of lines, the algorithm is designed for numerically solving FODE with the numerical error O(k min{1+2α,2} )+O(h 2 ), and the corresponding stability condition is got. The effectiveness of this numerical algorithm is evaluated by comparing its numerical results for α=1·0 with the ones of directly discretizing classical Fokker-Planck equation, some numerical results for time fractional Fokker-Planck equation with several different fractional orders are demonstrated and compared with each other, moreover for α=0·8 the convergent order in space is confirmed and the numerical results with different time step sizes are shown.
MSC:
76Fluid mechanics