zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Decomposition through formalization in a product space. (English) Zbl 0523.49022
MSC:
49M27Decomposition methods in calculus of variations
52A40Inequalities and extremum problems (convex geometry)
90C25Convex programming
52A07Convex sets in topological vector spaces (convex geometry)
49M25Discrete approximations in calculus of variations
49M30Other numerical methods in calculus of variations
65K05Mathematical programming (numerical methods)
References:
[1]A. Auslender, ”Etude numérique des problèmes d’optimisation avec contraintes”, Doctoral thesis, University of Grenoble (Grenoble, 1969).
[2]A. Auslender,Optimisation, méthodes numériques (Masson, Paris, 1976).
[3]J. Baranger and T. Dumont ”Decomposition and projection for nonlinear boundary value problems”, Discussion paper, UER de Mathématiques, University of Lyon I (Lyon, September 1980).
[4]A. Bensoussan and P. Kenneth, ”Sur l’analogie entre les méthodes de régularisation et de pénalisation”,Revue d’Informatique et de Recherche Opérationnelle 13-R3 (1968) 13–25.
[5]J. Cea,Optimisation (Dunod, Paris, 1971).
[6]J. Dumont, ”Décomposition par projection de certains problèmes elliptiques non linéaires”, 3rd C. Thesis, University of Lyon (Lyon 1978).
[7]I. Ekeland and R. Temam,Analyse convexe et problèmes variationnels (Dunod, Paris, 1974).
[8]W. Findeisen, ”Parametric optimization by primal method in multilevel systems”,IEEE Transactions on Systems Science and Cybernetics 4 (1968) 155–164. · doi:10.1109/TSSC.1968.300143
[9]N. Gastinel,Analyse numérique linéaire (Hermann, Paris, 1966).
[10]L. G. Gubin, B.T. Polyak and E.V. Raik, ”The method of projections for finding the common point of convex sets”,USSR Computational Mathematics and Mathematical Physics 7 (1967) 1–24 (Translation of theZhurnal vychislitelnoj Matematiki i matematicheskoj Fiziki). · Zbl 0199.51002 · doi:10.1016/0041-5553(67)90113-9
[11]Y. Haugazeau, ”Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes”, Doctoral thesis, University of Paris (Paris 1968).
[12]A.A. Kaplan, ”Determination of the extremum of a linear function of a convex set”,Soviet Mathematics Doklady 9 (1968) 269–271 (Translation of the Pure Mathematics Section of the Doklady Akademii Nauk SSSR)
[13]J.E. Kelley, ”The cutting plane method for solving convex programs”,Journal of the Society for Industrial and Applied Mathematics 6 (1958) 15–22. · Zbl 0084.15804 · doi:10.1137/0106002
[14]P.J. Laurent and B. Martinet, ”Méthodes duales pour le calcul du minimum d’une fonction convexe sur une intersection de convexes”, in: A. V. Balakrishnan, M. Contensou, B.F. de Veubeke, P. Krée, J. L. Lions and N.N. Moiseev, eds,Lecture Notes in Mathematics 132 (Springer, Berlin, 1970) pp. 159–180.
[15]J.L. Lions and R. Temam, ”Eclatement et décentralisation en calcul des variations”, in: A.V. Balakrishnan, M. Contensou, B.F. de Veubeke, P. Krée, J.L. Lions and N.N. Moiseev, eds.,Lecture Notes in Mathématics 132 (Springer, Berlin, 1970) pp. 196–217.
[16]J.L. Lions and G.I. Marchouk,Sur les méthodes numériques en sciences physiques et économiques (Dunod, Paris, 1974).
[17]L. McLinden, ”Symmetrized separable convex programming”,Transactions of the American Mathematical Society 247 (1979) 1–44. · doi:10.1090/S0002-9947-1979-0517685-5
[18]B. Martinet, ”Algorithmes pout la résolution des problèmes d’optimisation et de minimax”, Doctoral thesis, University of Grenoble (Grenoble, 1972).
[19]B. Martinet and A. Auslander, ”Méthodes de décomposition pour la minimisation d’une fonction sur un espace produit”,SIAM Journal on Control 12 (1974) 635–642. · Zbl 0302.49025 · doi:10.1137/0312047
[20]Y.I. Merzlyakov, ”On a relaxation method of solving systems of linear inequalities”USSR Computational Mathematics and Mathematical Physics 2 (1962) 482–487 (Translation of the Zhurnal vychislitelnoj Matematiki i matematicheskoj Fiziki).
[21]M. D. Mesarovic, D. Macko and Y. Takahara,Theory of hierarchical multilevel systems (Academic Press, New York, 1970).
[22]J.J. Moreau, ”Proximité et dualité dans un espace hilbertien”,Bulletin de la Société Mathématique de France 93 (1965) 273–299.
[23]W. Oettli, ”An iterative method, having a linear rate of convergence, for solving a pair of dual linear programs”,Mathematical Programming 3 (1972) 302–311. · Zbl 0259.90019 · doi:10.1007/BF01585003
[24]E.L. Peterson, ”Generalization and symmetrization of duality in geometric programming”, Discussion paper, Northwestern University, [Evanston, 1972].
[25]G. Pierra, ”Eclatement de contraintes en parallèle pour la minimisation d’une forme quadratique” in: J. Cea, ed.,Lecture Notes in Computer Science 41 (Springer, Berlin, 1976) pp. 200–218.
[26]G. Pierra, ”Crossing of algorithms in decomposition methods”, in: G. Gardabassi and A. Locatelli, eds.,Large Scale Systems theory and applications (ISA, Pittsburg, 1976) pp. 309–319.
[27]G. Pierra, ”Méthodes de décomposition et croisement d’algorithmes pour des problèmes d’optimisation”, Doctoral thesis, University of Grenoble (Grenoble 1976).
[28]R. T. Rockafellar, ”Monotone operators and the proximal point algorithm”,SIAM Journal on Control 14 (1976) 877–898. · Zbl 0358.90053 · doi:10.1137/0314056
[29]R. Temam, ”Quelques méthodes de décomposition en analyse numérique”, in:Actes, Congrès International des Mathématiciens 1970 (Gauthier-Villars, Paris, 1971) pp. 311–319.
[30]N.N. Yanenko,Méthode à pas fractionnaires (Armand Colin, Paris, 1968).
[31]R.S. Varga,Matrix iterative analysis (Prentice Hall, Englewood Cliffs, N.J., 1962).