zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The C 1 closing lemma, including Hamiltonians. (English) Zbl 0548.58012

Let γ be a trajectory of a dynamical system X which is recurrent. Is there a dynamical system close to X with a periodic trajectory close to γ ? This question is the closing problem for γ. As one makes the question precise by assigning a topology to an appropriate space of dynamical systems the solution to this problem can be quite easy or, as is usually the case, difficult in the extreme. Aside from the obvious intrinsic interest of the problem, dynamicists are interested in the closing problem because it is the key ingredient in theorems of general density. For example, the original closing lemma for a recurrent orbit of a C 1 diffeomorphism of a compact manifold due to the first author [Am. J. Math. 89, 956-1009, 1010-1021 (1967; Zbl 0167.218)] implies the general density theorem: If M is a compact manifold then the generic diffeomorphism in the C 1 topology has its periodic points dense in its nonwandering set.

In the paper under review the authors study a new property which they call the lift axiom which is formulated separately for subsets of diffeomorphisms, flows and vector fields. For diffeomorphisms one considers a subset S of the C 1 diffeomorphisms of a compact Riemannian manifold with exponential map exp which imbeds each unit ball in the unit sphere bundle into M. S satisfies the lift axiom if for each fS and each C 1 neighborhood U of f there is an ϵ>0 such that whenever V is a unit tangent vector at p there is a diffeomorphism close to the identity satisfying gfU and (L1) g(p)=exp(ϵv), (L2) the set of all points where g is not the identity is contained in exp p (T p M(r)), the exponential image of the unit r ball and (L3) if g 1 ,···,g n are several such perturbations with disjoint support then g 1 ···g n fS. The main result is the following: if S satisfies the lift axiom then S has the closing property. This result is used to prove the original closing lemma and the C 1 case of Poincaré’s conjecture on Hamiltonian vector fields that C r generically in the space of Hamiltonian vector fields the periodic trajectories are dense in the compact energy surfaces.

The paper contains an informative introduction which is recommended even to the nonspecialist as a precise account of the results of the paper; see also the earlier paper of the second author [Lect. Notes Math. 668, 225-230 (1978; Zbl 0403.58020)].

Reviewer: C.Chicone

37J99Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
58D05Groups of diffeomorphisms and homeomorphisms as manifolds
37C10Vector fields, flows, ordinary differential equations
58A10Differential forms (global analysis)