zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. (English) Zbl 1168.62086

Summary: Short-range forecasts of precipitation fields are needed in a wealth of agricultural, hydrological, ecological and other applications. Forecasts from numerical weather prediction models are often biased and do not provide uncertainty information. We present a postprocessing technique for such numerical forecasts that produces correlated probabilistic forecasts of precipitation accumulation at multiple sites simultaneously.

The statistical model is a spatial version of a two-stage model that represents the distribution of precipitation by a mixture of a point mass at zero and a gamma density for the continuous distribution of precipitation accumulation. Spatial correlation is captured by assuming that two Gaussian processes drive precipitation occurrence and precipitation amount, respectively. The first process is latent and drives precipitation occurrence via a threshold. The second process explains the spatial correlation in precipitation accumulation. It is related to precipitation via a site-specific transformation function, so as to retain the marginal right-skewed distribution of precipitation while modeling spatial dependence. Both processes take into account the information contained in the numerical weather forecasts and are modeled as stationary isotropic spatial processes with an exponential correlation function.

The two-stage spatial model was applied to 48-hour-ahead forecasts of daily precipitation accumulation over the Pacific Northwest in 2004. The predictive distributions from the two-stage spatial model were calibrated and sharp, and outperformed reference forecasts for spatially composite and areally averaged quantities.

62M20Prediction; filtering (statistics)
62P12Applications of statistics to environmental and related topics
62M30Statistics of spatial processes
65C60Computational problems in statistics