zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computing a trust region step. (English) Zbl 0551.65042
We propose an algorithm for the problem of minimizing a quadratic function subject to an ellipsoidal constraint and show that this algorithm is guaranteed to produce a nearly optimal solution in a finite number of iterations. We also consider the use of this algorithm in a trust region Newton’s method. In particular, we prove that under reasonable assumptions the sequence generated by Newton’s method has a limit point which satisfies the first and second order necessary conditions for a minimizer of the objective function. Numerical results for GQTPAR, which is a Fortran implementation of our algorithm, show that GQTPAR is quite successful in a trust region method. In our tests a call to GQTPAR only required 1.6 iterations on the average.

MSC:
65K05Mathematical programming (numerical methods)
90C20Quadratic programming
Software:
GQTPAR; NMTR