zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bessel transforms and rational extrapolation. (English) Zbl 0554.65010
A numerical method is developed which handles the Bessel transform of functions having slow rates of decrease, i.e. f(u)=O(u -α ), u+ (α>0) in the Bessel transform H v (λ)= 0 f(u)J v (λu)du,v>-1/2· The method replaces H v by a related damped transform for which the sinc quadrature rule provides an efficient and accurate approximation. It is then shown that the value of H v (λ) can be obtained from the damped transform by extrapolation with the Thiele algorithm.
65D20Computation of special functions, construction of tables
65R10Integral transforms (numerical methods)
44A15Special transforms (Legendre, Hilbert, etc.)
44A20Integral transforms of special functions
33C10Bessel and Airy functions, cylinder functions, 0 F 1
[1]Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. NBS Appl. Math. Ser.55, 375-417. New York: Dover 1964
[2]Crump, K.S.: Numerical inversion of Laplace Transforms using a Fourier series approximation. J. Assoc. Comput. Mach.23, 89-96 (1976)
[3]de Balaine, G., Franklin, J.N.: The calculation of Fourier integrals. Math. Comput.20, 570-89 (1966) · doi:10.1090/S0025-5718-1966-0203976-9
[4]Erd?lyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Tables of Integral Transforms, vol. 1. New York: McGraw-Hill 1954
[5]Erd?lyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Tables of Integral Transforms, vol. 2. New York: McGraw-Hill 1954
[6]Henrici, P.: Applied and Computational Complex Analysis, vol. 2. New York: John Wiley 1977
[7]Hildebrand, F.B.: Introduction to Numerical Analysis. (2nd ed.) New York: McGraw-Hill 1974
[8]Longman, I.M.: Note on a method for computing infinite integrals of oscillatory functions. Proc. Camb. Philos.52, 764-68 (1956) · doi:10.1017/S030500410003187X
[9]Olver, F.W.J.: Asymptotics and Special Functions. New York: Academic Press 1974
[10]Sidi, A.: Extrapolation methods for oscillatory infinite integrals. J. Inst. Math. App.26, 1-20 (1980) · Zbl 0464.65002 · doi:10.1093/imamat/26.1.1
[11]Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev.23, 165-224 (1981) · Zbl 0461.65007 · doi:10.1137/1023037
[12]Stenger, F.: Explicit, nearly optimal, linear rational approximation with preassigned poles. (in preparation)
[13]Stenger, F.: Optimal convergence of minimum norm approximations inH p . Numer. Math.29, 342-62 (1978) · Zbl 0437.41030 · doi:10.1007/BF01432874
[14]Widder, D.V.: The Laplace Transform. Princeton: University Press 1941
[15]Wuytack, L.: A new technique for rational extrapolation to the limit. Numer. Math.17, 215-221 (1971) · Zbl 0225.65007 · doi:10.1007/BF01436377
[16]Wynn, P.: On a procrustean technique for the numerical transformation of slowly convergent sequences and series. Proc. Camb. Philos.52, 663-71 (1960) · doi:10.1017/S030500410003173X