zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Automatically determining symmetries of partial differential equations. (English) Zbl 0555.65076
A REDUCE package for determining the group of Lie symmetries of an arbitrary system of partial differential equations is described. It may be used both interactively and in a batch mode. In many cases the system finds the full group completely automatically. In some other cases there are a few linear differential equations of the determining system left the solution of which cannot be found automatically at present. If it is provided by the user, the infinitesimal generators of the symmetry group are returned.

MSC:
65Z05Applications of numerical analysis to physics
65YxxComputer aspects of numerical algorithms
35-04Machine computation, programs (partial differential equations)
35C05Solutions of PDE in closed form
22E99Lie groups
Software:
REDUCE
References:
[1]Lie, S.: Differentialgleichungen. Leipzig: 1891. (Reprinted by Chelsea Publ. Co., New York, 1967).
[2]Campbell, J. E.: Introductory Treatise on Lie’s Theory of Finite Continuous Transformation Groups. New York: Chelsea Publ. Col 1903. (Reprinted in 1966 by the same company).
[3]Dickson, L. E.: Differential equations from the group standpoint. Ann. Math.25, 287–378 (1924). · doi:10.2307/1967773
[4]Cohen, A.: An Introduction to the Lie Theory of One-Parameter Groups. New York: Stechert & Co. 1931.
[5]Birkhoff, G.: Hydrodynamics. Princeton: Princeton University Press 1950.
[6]Sedov, L. I.: Similarity and Dimensional Methods in Mechanics. London: Infosearch 1959.
[7]Ovsjannikov, L. V.: Group Properties of Differential Equations. Novosibirsk: 1962. (Translated by Bluman, G. W.)
[8]Hansen, A. G., Similarity Analyses of Boundary Value Problems in Engineering. Englewood Cliffs, N. J.: Prentice-Hall 1964.
[9]Ames, W. F.: Nonlinear Partial Differential Equations in Engineering II. New York: Academic Press 1972.
[10]Bluman, G. W., Cole, J. D.: Similarity Methods for Differential Equations (Applied Mathematics Series, Vol. 13). Berlin-Heidelberg-New York: 1974.
[11]Chester, W.: Continuous transformations and differential equations. J. Inst. Math. Applics.19, 343–376 (1977). · Zbl 0349.34011 · doi:10.1093/imamat/19.3.343
[12]Olver, R.: J. Diff. Geometry14, 497–542 (1979).
[13]Vladimirov, S. A.: Symmetry Groups of Differential Equations and Relativistic Fields. Moskau: 1979 (in Russian).
[14]Barenblatt, G. I.: Similarity, Self-Similarity and Intermediate Asymptotics. New York: Consultants Bureau 1979.
[15]Anderson, R. L., Ibragimov, N. H.: Lie Baecklund Transformations in Applications. Philadelphia: SIAM 1979.
[16]Sattinger, D. H.: Les symétries des équations et leurs applications dans la mechanique et à la physique. Publications Mathématiques d’Orsay 80.08, 1980.
[17]Ovsjannikov, L. V.: Group Analysis of Differential Equations. New York: Academic Press 1982.
[18]Hill, J. M.: Solution of Differential Equations by Means of One-parameter Groups. Boston: Pitman 1982.
[19]Schwarz, F.: A REDUCE package for determining Lie symmetries of ordinary and partial differential equations. Comp. Phys. Commun.27, 179–186 (1982). · doi:10.1016/0010-4655(82)90072-8
[20]Schwarz, F.: Automatically determining symmetries of ordinary differential equations. In: Proceedings of the EUROCAL’83, London, p. 45. Berlin-Heidelberg-New York: Springer 1983.
[21]Hearn, A. C.: REDUCE User’s Manual. Santa Monica: Rand Corporation 1983.
[22]Calogero, F., Degasperis, A.: Spectral Transform and Solutions. Amsterdam: North-Holland 1982.
[23]Schwarz, F.: Symmetries of the two-dimensional Korteweg-deVries equation. Jo. Phys. Soc. Japan51, 2387 (1982); Symmetries of SU (2) invariant Yang-Mills theories, Lett. Math. Phys.6, 355 (1982); Lie-symmetries of the von Karman equations, Comp. Phys. Commun.31, 113 (1984). · doi:10.1143/JPSJ.51.2387
[24]Kamke, E.: Differentialgleichungen, Lösungsmethoden und Lösungen II. Leipzig: Akademische Verlagsgesellschaft 1965.