zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Toward causal inference with interference. (English) Zbl 05564536
Summary: A fundamental assumption usually made in causal inference is that of no interference between individuals (or units); that is, the potential outcomes of one individual are assumed to be unaffected by the treatment assignment of other individuals. However, in many settings, this assumption obviously does not hold. For example, in the dependent happenings of infectious diseases, whether one person becomes infected depends on who else in the population is vaccinated. In this article, we consider a population of groups of individuals where interference is possible between individuals within the same group. We propose estimands for direct, indirect, total, and overall causal effects of treatment strategies in this setting. Relations among the estimands are established; for example, the total causal effect is shown to equal the sum of direct and indirect causal effects. Using an experimental design with a two-stage randomization procedure (first at the group level, then at the individual level within groups), unbiased estimators of the proposed estimands are presented. Variances of the estimators are also developed. The methodology is illustrated in two different settings where interference is likely: assessing causal effects of housing vouchers and of vaccines.
MSC:
62-99Statistics (MSC2000)