zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hybrid methods for a class of monotone variational inequalities. (English) Zbl 1176.90462
The paper deals with the study of certain hybrid methods for a special class of ill-posed monotone variational inequality problems in a Hilbert space setting, where the underlying operator is the complement of a nonexpansive mapping and the constraint set equals the set of fixed points of another nonexpansive mapping. Problems of this type include in particular monotone inclusions and convex optimization problems with a constraint set of the latter type. It is shown that both implicit and explicit iterative schemes are strongly convergent, where the employed regularization technique uses contractions of the nonexpansive operator in the variational inequality and allows a proof under considerably less restrictive conditions than they were needed for a related earlier approach by other authors. The paper is completed with an application to the class of hierarchical optimization problems where a proper lower semi-continuous convex function on a Hilbert space is minimized over the set of minimizers of another function of this type.

90C25Convex programming
47H05Monotone operators (with respect to duality) and generalizations
47H09Mappings defined by “shrinking” properties
65J15Equations with nonlinear operators (numerical methods)