zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
"Neural” computation of decisions in optimization problems. (English) Zbl 0572.68041
Highly-interconnected networks of nonlinear analog neurons are shown to be extremely effective in computing. The networks can rapidly provide a collectively-computed solution (a digital output) to a problem on the basis of analog input information. The problems to be solved must be formulated in terms of desired optima, often subject to constraints. The general principles involved in constructing networks to solve specific problems are discussed. Results of computer simulations of a network designed to solve a difficult but well-defined opimization problem - the Traveling-Salesman Problem - are presented and used to illustrate the computational power of the networks. Good solutions to this problem are collectively computed within an elapsed time of only a few neural time constants. The effectiveness of the computation involves both the nonlinear analog response of the neurons and the large connectivity among them. Dedicated networks of biological or microelectronic neurons could provide the computational capabilities described for a wide class of problems having combinatorial complexity. The power and speed naturally displayed by such collective networks may contribute to the effectiveness of biological information processing.

68Q99Theory of computing
90C35Programming involving graphs or networks
92B05General biology and biomathematics
68Q25Analysis of algorithms and problem complexity
94C99Circuits, networks