zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Unsteady lifting-line theory as a singular-perturbation problem. (English) Zbl 0589.76027
Summary: Unsteady lifting-line theory is developed for a wing of large aspect ratio oscillating at low frequency in inviscid incompressible flow. The wing is assumed to have a rigid chord but a flexible span. Use of the method of matched asymptotic expansions reduces the problem from a singular integral equation to quadrature. The pressure field and airloads, for a prescribed wing shape and motion, are obtained in closed form as expansions in inverse aspect ratio. A rigorous definition of unsteady induced downwash is also obtained. Numerical calculations are presented for an elliptic wing in pitch and heave; compared with numerical lifting-surface theory, computation time is reduced significantly. The present work also identifies and resolves errors in the unsteady lifting-line theory of E. C. James [ibid. 70, 753-771 (1975; Zbl 0363.76006)], and points out a limitation in that of T. Van Holten [e.g.: ibid. 77, 561-579 (1976; Zbl 0338.76009)].
76B10Jets and cavities, cavitation, free-streamline theory, water-entry problems, etc.
76B25Solitary waves (inviscid fluids)
76M99Basic methods in fluid mechanics