zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Cluster expansion for abstract polymer models. (English) Zbl 0593.05006
Summary: A new direct proof of convergence of cluster expansions for polymer (contour) models is given in an abstract setting. It does not rely on Kirkwood-Salsburg type equations or “combinatorics of trees”. A distinctive feature is that, at all steps, the considered clusters contain every polymer at most once.

82B05Classical equilibrium statistical mechanics (general)
60K35Interacting random processes; statistical mechanics type models; percolation theory
82B20Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs
82B21Continuum models (systems of particles, etc.)
82D60Polymers (statistical mechanics)
[1]Malyshev, V.A.: Cluster expansions in lattice models in statistical physics and quantum field theory. Usp. Mat. Nauk35, 3-53 (1980)
[2]Ruelle, D.: Statistical mechanics: Rigorous results. New York: Benjamin 1969
[3]Minlos, R.A., Sinai, Ya.G.: The phenomenon of ?phase separation? at low temperatures in some lattice models of a gas. I, II. Math. USSR-Sb.2, 335-395 (1967) and Trans. Mosc. Math. Soc.19, 121-196 (1968) · doi:10.1070/SM1967v002n03ABEH002345
[4]Sinai, Ya.G.: Theory of phase transitions: rigorous results. Budapest and London: Akadémiai Kiadó and Pergamon Press 1982
[5]Gruber, C., Kunz, H.: General properties of polymer systems. Commun. Math. Phys.22, 133-161 (1971) · doi:10.1007/BF01651334
[6]Gallavotti, G., Martin-Löf, A., Miracle-Sole, S.: Some problems connected with the description of coexisting phases at low temperatures in the Ising model. Battelle Seattle 1971 Recontres. A. Lenard, (ed.). Lecture Notes in Physics, Vol. 20, pp. 162-204. Berlin, Heidelberg, New York: Springer 1973
[7]Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. Lecture Notes in Physics, Vol. 159. Berlin, Heidelberg, New York: Springer 1982
[8]Cammarota, C.: Decay of correlations for infinite range interactions in unbounded spin systems. Commun. Math. Phys.85, 517 (1982) · doi:10.1007/BF01403502
[9]Rushbrooke, G.S., Baker, G.A., Wood, P.J.: Heisenberg model, pp. 245-356. Domb, C.: Graph theory and embeddings, pp. 1-95. In: Phase transitions and critical phenomena, Vol. 3. Domb, C., Green, M.S. (eds.). London, New York, San Francisco: Academic Press 1974
[10]Mack, G.: Nonperturbative methods. In: Gange theories of the eighties. Raitio, R., Lindfors, J. (eds.). Lecture Notes in Physics, Vol. 181. Berlin, Heidelberg, New York: Springer 1983
[11]Guerra, F.: Gauge fields on a lattice: selected topics. In: Field theoretical methods in particle physics, pp. 41-65. Rühl, W. (ed.). New York, London: Plenum Press 1980
[12]Navrátil, J.: Contour models and unicity of random fields. (In Czech). Diploma thesis, Charles University, Prague (1982)
[13]Kotecký, R., Preiss, D.: Dobrushin unicity and its application to polymer models (in preparation)