zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A stable finite element for the Stokes equations. (English) Zbl 0593.76039
Summary: We present in this paper a new velocity-pressure finite element for the computation of Stokes flow. We discretize the velocity field with continuous piecewise linear functions enriched by bubble functions, and the pressure by piecewise linear functions. We show that this element satisfies the usual inf-sup condition and converges with first order for both velocities and pressure. Finally we relate this element to families of higher order elements and to the popular Taylor-Hood element.

76D07Stokes and related (Oseen, etc.) flows
35Q30Stokes and Navier-Stokes equations
[1]M. Bercovier, O. Pironneau,Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math.33 (1979), 211–224. · Zbl 0423.65058 · doi:10.1007/BF01399555
[2]F. Brezzi,On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multiplers, RAIRO Anal. Numér.2 (1974), 129–151.
[3]P. Clement,Approximation by finite element functions using local regularization, RAIRO Anal. Numér.9 R-2 (1975), 33–76.
[4]M. Crouzeix, P. A. Raviart,Conforming and non-conforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numér.7 R-3 (1977), 33–76.
[5]M. Fortin,An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numér.11 R-3 (1977), 341–354.
[6]M. Fortin,Old and new finite elements for incompressible flows, International J. Numer. Methods Fluids1 (1981), 347–364. · Zbl 0467.76030 · doi:10.1002/fld.1650010406
[7]R. Glowinski,Numerical methods for nonlinear variational problems (Second Edition), Springer, New York, (1983).
[8]R. B. Kellog, J. E. Osborn,A regularity result for the Stokes problem in a convex polygon, Funct. Anal.21 (4) (1976), 397–431. · Zbl 0317.35037 · doi:10.1016/0022-1236(76)90035-5
[9]T. Verfürth,Error estimates for a mixed finite element approximation of the Stokes equations, (to appear in RAIRO).