zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. (English) Zbl 0596.65004

The special spline smoothing model to be considered is given by y i =f(t i )+ϵ i , i=1,···,n, t i [0,1], where ϵ=(ϵ 1 ,···,ϵ n )N(0,σ 2 I n×n ), σ 2 is unknown, and f(·) is some function in the Sobolev space W 2 m [0,1]={f: f,f 1 ,···,f (m-1) absolutely continuous, f (m) L 2 [0,1]} and the smoothing spline estimate f n,λ of f is the minimizer in W 2 m [0,1] of

1/n i=1 n (f(t i )-y i ) 2 +λ 0 1 (f (m) (t)) 2 dt·

A generalization of the maximum likelihood (GML) estimate for the smoothing parameter λ is obtained, and this estimate is compared with the generalized cross validation (GCV) estimate both analytically and by Monte Carlo methods. The theoretical results are shown to extend to the generalized spline smoothing model, which includes the estimate of functions given noisy values of various integrals of them.

Reviewer: Y.Sun

65D10Smoothing, curve fitting
65R20Integral equations (numerical methods)