zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). (English) Zbl 05969393
Summary: In our recent works (R. Szmytkowski, J. Phys. A 39:15147, 2006; corrigendum: 40:7819, 2007; addendum: 40:14887, 2007), we have investigated the derivative of the Legendre function of the first kind, P ν (z), with respect to its degree ν. In the present work, we extend these studies and construct several representations of the derivative of the associated Legendre function of the first kind, P ν ±m (z), with respect to the degree ν, for m. At first, we establish several contour-integral representations of P ν ±m (z)/ν. They are then used to derive Rodrigues-type formulas for [P ν ±m (z)/ν] ν=n with n. Next, some closed-form expressions for [P ν ±m (z)/ν] ν=n are obtained. These results are applied to find several representations, both explicit and of the Rodrigues type, for the associated Legendre function of the second kind of integer degree and order, Q n ±m (z); the explicit representations are suitable for use for numerical purposes in various regions of the complex z-plane. Finally, the derivatives [ 2 P ν m (z)/ν 2 ] ν=n ,[Q ν m (z)/ν] ν=n and [Q ν m (z)/ν] ν=-n-1 , all with m>n, are evaluated in terms of [P ν -m (±z)/ν] ν=n . The present paper is a complementary to a recent one (R. Szmytkowski, J. Math. Chem 46:231, 2009), in which the derivative P n μ (z)/μ has been investigated.
MSC:
92EChemistry
References:
[1]Szmytkowski R.: On the derivative of the Legendre function of the first kind with respect to its degree. J. Phys. A 39, 15147 (2006) [corrigendum: 40, 7819 (2007)] · Zbl 1112.33009 · doi:10.1088/0305-4470/39/49/006
[2]Jolliffe A.E.: A form for $${frac{mathrm{d}}{mathrm{d}n}P_{n}(mu)}$$ , where P n (μ) is the Legendre polynomial of degree n. Mess. Math. 49, 125 (1919)
[3]I’A Bromwich T.J.: Certain potential functions and a new solution of Laplace’s equation. Proc. Lond. Math. Soc. 12, 100 (1913) · doi:10.1112/plms/s2-12.1.100
[4]Schelkunoff S.A.: Theory of antennas of arbitrary size and shape. Proc. IRE 29, 493 (1941) [corrigendum: 31, 38 (1943); reprint: Proc. IEEE 72, 1165 (1984)] · doi:10.1109/JRPROC.1941.231669
[5]Magnus W., Oberhettinger F., Soni R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edn. Springer, Berlin (1966)
[6]Szmytkowski R.: Addendum to ’On the derivative of the Legendre function of the first kind with respect to its degree’. J. Phys. A 40, 14887 (2007) · Zbl 1125.33303 · doi:10.1088/1751-8113/40/49/020
[7]Carslaw H.S.: Integral equations and the determination of Green’s functions in the theory of potential. Proc. Edinburgh Math. Soc. 31, 71 (1913) · doi:10.1017/S0013091500034179
[8]Carslaw H.S.: The scattering of sound waves by a cone. Math. Ann. 75, 133 (1914) [corrigendum: 75, 592 (1914)] · doi:10.1007/BF01564524
[9]Carslaw H.S.: The Green’s function for the equation $${{nabla}2}u + k2}u = 0}$$ . Proc. Lond. Math. Soc. 13, 236 (1914) · doi:10.1112/plms/s2-13.1.236
[10]Macdonald H.M.: A class of diffraction problems. Proc. Lond. Math. Soc. 14, 410 (1915) · doi:10.1112/plms/s2_14.1.410
[11]Carslaw H.S.: Introduction to the Mathematical Theory of the Conduction of Heat in Solids, pp. 145–147. Macmillan, London (1921)
[12]H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1947) pp. 214 and 318
[13]Smythe W.R.: Static and Dynamic Electricity, 2nd edn, pp. 156–157. McGraw-Hill, New York (1950)
[14]Smythe W.R.: Static and Dynamic Electricity, 3rd edn, pp. 166–167. McGraw-Hill, New York (1968)
[15]Felsen L.B.: Backscattering from wide-angle and narrow-angle cones. J. Appl. Phys. 26, 138 (1955) · Zbl 0065.20301 · doi:10.1063/1.1721952
[16]Bailin L.L., Silver S.: Exterior electromagnetic boundary value problems for spheres and cones. IRE Trans. Antennas Propag. 4, 5 (1956) [corrigendum: 5, 313 (1957)] · doi:10.1109/IRETAP.1956.6366290
[17]Felsen L.B.: Plane-wave scattering by small-angle cones. IRE Trans. Antennas Propag. 5, 121 (1957) · doi:10.1109/TAP.1957.1144470
[18]Felsen L.B.: Radiation from ring sources in the presence of a semi-infinite cone. IRE Trans. Antennas Propag. 7, 168 (1959) [corrigendum: 7, 251 (1959)] · doi:10.1109/TAP.1959.1144663
[19]Jones D.S.: The Theory of Electromagnetism, pp. 614. Pergamon, Oxford (1964)
[20]Bowman J.J.: Electromagnetic and Acoustic Scattering by Simple Shapes. In: Bowman, J.J., Senior, T.B.A., Uslenghi, P.L.E. (eds) , pp. 637. North-Holland, Amsterdam (1969)
[21]Felsen L.B., Marcuvitz N.: Radiation and Scattering of Waves. Prentice-Hall, Englewood Cliffs, NJ (1973) [reprinted: IEEE Press, Piscataway, NJ, 1994], pp. 320, 321, 703 and 734
[22]Galitsyn A.S., Zhukovskii A.N.: Integral Transforms and Special Functions in Heat Conduction Problems. Naukova Dumka, Kiev (1976) (in Russian), pp. 236, 237 and 239
[23]Ariyasu J.C., Mills D.L.: Inelastic electron scattering by long-wavelength, acoustic phonons; image potential modulation as a mechanism. Surf. Sci. 155, 607 (1985) (appendix B) · doi:10.1016/0039-6028(85)90017-2
[24]Jones D.S.: Acoustic and Electromagnetic Waves, pp. 591. Clarendon, Oxford (1986)
[25]Bauer H.F.: Mass transport in a three-dimensional diffusor or confusor. Wärme-Stoffübertrag 21, 51 (1987) · doi:10.1007/BF01008217
[26]Bauer H.F.: Response of axially excited spherical and conical liquid systems with anchored edges. Forsch. Ing.-Wes. 58(4), 96 (1992) · doi:10.1007/BF02561490
[27]Broadbent E.G., Moore D.W.: The inclination of a hollow vortex with an inclined plane and the acoustic radiation produced. Proc. R. Soc. Lond. A 455, 1979 (1999) · Zbl 0933.76081 · doi:10.1098/rspa.1999.0389
[28]Van Bladel J.: Electromagnetic Fields, 2nd edn. IEEE Press, Piscataway (2007) (Section 16.7.1)
[29]Szmytkowski R.: The Green’s function for the wavized Maxwell fish-eye problem. J. Phys. A 44, 065203 (2011) · Zbl 1210.35246 · doi:10.1088/1751-8113/44/6/065203
[30]R. Szmytkowski, Some differentiation formulas for Legendre polynomials, arXiv:0910.4715
[31]Hobson E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, Cambridge (1931) [reprinted: Chelsea, New York, 1955]
[32]Robin L.: Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 1. Gauthier-Villars, Paris (1957)
[33]Robin L.: Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 2. Gauthier-Villars, Paris (1958)
[34]Robin L.: Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 3. Gauthier-Villars, Paris (1959)
[35]Szmytkowski R.: On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Chem. 46, 231 (2009) · doi:10.1007/s10910-008-9457-5
[36]R. Szmytkowski, On parameter derivatives of the associated Legendre function of the first kind (with applications to the construction of the associated Legendre function of the second kind of integer degree and order), arXiv:0910.4550
[37]Robin L.: Derivée de la fonction associée de Legendre, de première espèce, par rapport à son degré. Compt. Rend. Acad. Sci. Paris 242, 57 (1956)
[38]Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products, 5th edn. Academic, San Diego (1994)
[39]Prudnikov A.P., Brychkov Yu.A., Marichev O.I.: Integrals and Series. Special Functions. Supplementary Chapters, 2nd edn. Fizmatlit, Moscow (2003) (in Russian)
[40]Hostler L.: Nonrelativistic Coulomb Green’s function in momentum space. J. Math. Phys. 5, 1235 (1964) · doi:10.1063/1.1704231
[41]Brychkov Yu.A.: On the derivatives of the Legendre functions $${P_{nu}mu}(z)}$$ and $${Q_{nu}mu}(z)}$$ with respect to μ and ν. Integral Transforms Spec. Funct. 21, 175 (2010) · Zbl 1204.33010 · doi:10.1080/10652460903069660
[42]Cohl H.S.: Derivatives with respect to the degree and order of associated Legendre functions for |z| > 1 using modified Bessel functions. Integral Transforms Spec. Funct. 21, 581 (2010) · Zbl 1195.31006 · doi:10.1080/10652460903445043
[43]Brychkov Yu.A.: Handbook of Special Functions. Derivatives, Integrals, Series and Other Formulas. Chapman & Hall/CRC, Boca Raton, FL (2008)
[44]Magnus W., Oberhettinger F.: Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, 2nd edn. Springer, Berlin (1948)
[45]Stegun I.A.: Handbook of Mathematical Functions. In: Abramowitz, M., Stegun, I.A. (eds) , pp. 331. Dover, New York (1965)
[46]Tsu R.: The evaluation of incomplete normalization integrals and derivatives with respect to the order of associated Legendre polynomials. J. Math. Phys. 40, 232 (1961)
[47]Carlson B.C.: Dirichlet averages of x t log x. SIAM J. Math. Anal. 18, 550 (1987) · Zbl 0611.33004 · doi:10.1137/0518043
[48]Schendel L.: Zusatz zu der Abhandlung über Kugelfunctionen S. 86 des 80. Bandes. J. Reine Angew. Math. (Borchardt J.) 82, 158 (1877)
[49]Snow Ch.: Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory, 2nd edn. National Bureau of Standards, Washington, DC (1952)
[50]Szmytkowski R.: Closed form of the generalized Green’s function for the Helmholtz operator on the two-dimensional unit sphere. J. Math. Phys. 47, 063506 (2006) · Zbl 1112.35049 · doi:10.1063/1.2203430
[51]Szegö G.: Orthogonal Polynomials. American Mathematical Society, New York (1939) (chapter 4)
[52]Fröhlich J.: Parameter derivatives of the Jacobi polynomials and the Gaussian hypergeometric function. Integral Transforms Spec. Funct. 2, 253 (1994) · Zbl 0822.33003 · doi:10.1080/10652469408819056
[53]R. Szmytkowski, A note on parameter derivatives of classical orthogonal polynomials. arXiv:0901.2639