zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaoticity and invariant measures for a cell population model. (English) Zbl 06052840
Summary: We present a structured model of a cell reproduction system given by a partial differential equations with a nonlocal division term. This equation generates semiflows acting on some subspaces of locally integrable functions. We show that these semiflows possess invariant mixing measures positive on open sets. From this it follows that the system is chaotic, i.e., it has dense trajectories and each trajectory is unstable. We also show the chaoticity of this system in the sense of Devaney.
MSC:
35Partial differential equations (PDE)
92Applications of mathematics to Biology and other natural sciences
References:
[1]Hopf, E.: Statistical hydromechanics and functional calculus, J. ration. Mech. anal. 1, 87-123 (1952) · Zbl 0049.41704
[2]Foiaş, C.: Statistical study of Navier–Stokes equations I, Rend. semin. Mat. univ. Padova 48, 219-348 (1972) · Zbl 0283.76017 · doi:numdam:RSMUP_1972__48__219_0
[3]Lasota, A.: Invariant measures and a linear model of turbulence, Rend. semin. Mat. univ. Padova 61, 40-48 (1979) · Zbl 0459.28025 · doi:numdam:RSMUP_1979__61__39_0
[4]Lasota, A.; Mackey, M. C.: Chaos, fractals and noise. Stochastic aspects of dynamics, Applied mathematical sciences 97 (1994) · Zbl 0784.58005
[5]Bell, G. I.; Anderson, E. C.: Cell growth and division I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures, Biophys. J. 7, 329-351 (1967)
[6]Diekmann, O.; Heijmans, H. J. A.M.; Thieme, H. R.: On the stability of the cell size distribution, J. math. Biol. 19, 227-248 (1984) · Zbl 0543.92021 · doi:10.1007/BF00277748
[7]Gyllenberg, M.; Heijmans, H. J. A.M.: An abstract delay-differential equation modelling size dependent cell growth and division, SIAM J. Math. anal. 18, 74-88 (1987) · Zbl 0634.34064 · doi:10.1137/0518006
[8], Lecture notes in biomathematics 68 (1986)
[9]Rudnicki, R.; Pichór, K.: Markov semigroups and stability of the cell maturation distribution, J. biol. Syst. 8, 69-94 (2000)
[10]Webb, G. W.: Structured population dynamics, Mathematical modelling of population dynamics 63, 123-163 (2004) · Zbl 1051.92036
[11]Howard, K. E.: A size structured model of cell dwarfism, Discrete contin. Dyn. syst. 1, 471-484 (2001) · Zbl 0989.92014 · doi:10.3934/dcdsb.2001.1.471
[12]El Mourchid, S.; Metafune, G.; Rhandi, A.; Voigt, J.: On the chaotic behaviour of size structured cell populations, J. math. Anal. appl. 339, 918-924 (2008) · Zbl 1127.92015 · doi:10.1016/j.jmaa.2007.07.034
[13]Auslander, J.; Yorke, J. A.: Interval maps, factors of maps and chaos, Tôhoku math. J. ser. (2) 32, 177-188 (1980) · Zbl 0448.54040 · doi:10.2748/tmj/1178229634
[14]Rudnicki, R.: Strong ergodic properties of a first-order partial differential equation, J. math. Anal. appl. 133, 14-26 (1988) · Zbl 0673.35012 · doi:10.1016/0022-247X(88)90361-7
[15]Rudnicki, R.: Chaoticity of the blood cell production system, Chaos 19, 043112 (2009)
[16]Rudnicki, R.: Chaos for some infinite-dimensional dynamical systems, Math. methods appl. Sci. 27, 723-738 (2004) · Zbl 1156.37322 · doi:10.1002/mma.498
[17]Desch, W.; Schappacher, W.; Webb, G. F.: Hypercyclic and chaotic semigroups of linear operators, Ergodic theory dynam. Systems 17, 793-819 (1997) · Zbl 0910.47033 · doi:10.1017/S0143385797084976
[18]Banasiak, J.; Moszyński, M.: A generalization of desch–schappacher–webb criteria for chaos, Discrete contin. Dyn. syst. 12, 959-972 (2005) · Zbl 1084.47033 · doi:10.3934/dcds.2005.12.959
[19]Landers, D.; Roggie, L.: An ergodic theorem for Fréchet-valued random variables, Proc. amer. Math. soc. 72, 49-53 (1978) · Zbl 0397.28006 · doi:10.2307/2042531
[20]Devaney, R. L.: An introduction to chaotic dynamical systems, Addison-wesley studies in nonlinearity (1989) · Zbl 0695.58002
[21]El Mourchid, S.; Rhandi, A.; Vogt, H.; Voigt, J.: A sharp condition for the chaotic behaviour of a size structured cell population, Differential integral equations 22, 797-800 (2009)