zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complete convergence for weighted sums of negatively dependent random variables. (English) Zbl 06054163
Summary: In this paper, we obtain a complete convergence result for weighted sums of negatively dependent random variables under mild conditions of weights. This result generalizes and improves the result of Zarei and Jabbari (Stat Papers doi:''10.1007/s00362-009-0238-4'', 2009). Our result also extends the result of Taylor et al. (Stoch Anal Appl 20:643–656, 2002) on unweighted average to a weighted average.
MSC:
62Statistics
60F15Strong limit theorems
References:
[1]Amini M, Bozorgnia A (2000) Negatively dependent bounded random variable probability inequalities and the strong law of large numbers. J Appl Math Stoch Anal 13: 261–267 · doi:10.1155/S104895330000023X
[2]Amini M, Bozorgnia A (2003) Complete convergence for negatively dependent random variables. J Appl Math Stoch Anal 16: 121–126 · Zbl 1040.60021 · doi:10.1155/S104895330300008X
[3]Amini M, Azarnoosh HA, Bozorgnia A (2004) The strong law of large numbers for negatively dependent generalized Gaussian random variables. Stoch Anal Appl 22: 893–901 · Zbl 1056.60024 · doi:10.1081/SAP-120037623
[4]Amini M, Zarei H, Bozorgnia A (2007) Some strong limit theorems of weighted sums for negatively dependent generalized Gaussian random variables. Stat Probab Lett 77: 1106–1110 · Zbl 1120.60022 · doi:10.1016/j.spl.2007.01.015
[5]Asadian N, Fakoor V, Bozorgnia A (2006) Rosenthal’s type inequalities for negatively orthant dependent random variables. JIRSS 5: 69–75
[6]Chow YS (1966) Some convergence theorems for independent random variables. Ann Math Stat 37: 1482–1493 · Zbl 0152.16905 · doi:10.1214/aoms/1177699140
[7]Ebrahimi N, Ghosh M (1981) Multivariate negative dependence. Commun Stat Theory Methods A 10: 307–337 · doi:10.1080/03610928108828041
[8]Erdös P (1949) On a theorem of Hsu and Robbins. Ann Math Stat 20: 286–291 · Zbl 0033.29001 · doi:10.1214/aoms/1177730037
[9]Hsu PL, Robbins H (1947) Complete convergence and the law of large numbers. Proc Nat Acad Sci USA 33: 25–31 · Zbl 0030.20101 · doi:10.1073/pnas.33.2.25
[10]Joag-Dev K, Proschan F (1983) Negative association of random variables with applications. Ann Stat 11: 286–295 · Zbl 0508.62041 · doi:10.1214/aos/1176346079
[11]Katz M (1963) The probability in the tail of a distribution. Ann Math Stat 34: 312–318 · Zbl 0209.49503 · doi:10.1214/aoms/1177704268
[12]Klesov O, Rosalsky A, Volodin AI (2005) On the almost sure growth rate of sums of lower negatively dependent nonnegative random variables. Stat Prob Lett 71: 193–202 · Zbl 1070.60030 · doi:10.1016/j.spl.2004.10.027
[13]Kuczmaszewska A (2006) On some conditions for complete convergence for arrays of rowwise negatively dependent random variables. Stoch Anal Appl 24: 1083–1095 · Zbl 1108.60021 · doi:10.1080/07362990600958754
[14]Lehmann EL (1966) Some concepts of dependence. Ann Math Stat 37: 1137–1153 · Zbl 0146.40601 · doi:10.1214/aoms/1177699260
[15]Li D, Rosalsky A, Volodin AI (2006) On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables. Bull Inst Math Acad Sin (N.S.) 1: 281–305
[16]Stout WF (1968) Some results on the complete and almost sure convergence of linear combinations of independent random variables and martingale differences. Ann Math Stat 39: 1549–1562
[17]Stout WF (1974) Almost sure convergence. Academic Press, New York
[18]Taylor RL, Patterson RF, Bozorgnia A (2002) A strong law of large numbers for arrays of rowwise negatively dependent random variables. Stoch Anal Appl 20: 643–656 · Zbl 1003.60032 · doi:10.1081/SAP-120004118
[19]Volodin A (2002) On the Kolmogorov exponential inequality for negatively dependent random variables. Pak J Stat 18: 249–254
[20]Zarei H, Jabbari H (2009) Complete convergence of weighted sums under negative dependence. Stat Papers doi: 10.1007/s00362-009-0238-4