zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. (English) Zbl 06056883
Summary: We first construct the second kind Chebyshev wavelet. Then we present a computational method based on the second kind Chebyshev wavelet for solving a class of nonlinear Fredholm integro-differential equations of fractional order. The second kind Chebyshev wavelet operational matrix of fractional integration is derived and used to transform the equation to a system of algebraic equations. The method is illustrated by applications and the results obtained are compared with the existing ones in open literature. Moreover, comparing the methodology with the known technique shows that the present approach is more efficient and more accurate.
MSC:
35R09Integro-partial differential equations
References:
[1]He JH. Nonlinear oscillation with fractional derivative and its applications. In: International conference on vibrating engineering98. China: Dalian; 1998. p. 288 – 91.
[2]He, J. H.: Some applications of nonlinear fractional differential equations and their approximations, Bull sci technol 15, No. 2, 86-90 (1999)
[3]Bagley, R. L.; Torvik, P. J.: A theoretical basis for the application of fractional calculus to viscoelasticity, J rheol 27, No. 3, 201-210 (1983) · Zbl 0515.76012 · doi:10.1122/1.549724
[4]Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics, 291-348 (1997)
[5]Mandelbrot, B.: Some noises with 1/f spectrum, a Bridge between direct current and white noise, IEEE trans inform theory 13, No. 2, 289-298 (1967) · Zbl 0148.40507 · doi:10.1109/TIT.1967.1053992
[6]Rossikhin, Y. A.; Shitikova, M. V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl mech rev 50, 15-67 (1997)
[7]Baillie, R. T.: Long memory processes and fractional integration in econometrics, J econometrics 73, 5-59 (1996) · Zbl 0854.62099 · doi:10.1016/0304-4076(95)01732-1
[8]Panda, R.; Dash, M.: Fractional generalized splines and signal processing, Signal process 86, 2340-2350 (2006) · Zbl 1172.65315 · doi:10.1016/j.sigpro.2005.10.017
[9]Bohannan, G. W.: Analog fractional order controller in temperature and motor control applications, J vib control 14, 1487-1498 (2008)
[10]Chow, T. S.: Fractional dynamics of interfaces between soft-nanoparticles and rough substrates, Phys lett A 342, 148-155 (2005)
[11]Momani, S. M.: Local and global existence theorems on fractional integro-differential equations, J fract calc 18, 81-86 (2000) · Zbl 0967.45004
[12]Boyadjiev, L.; Dobner, H. J.; Kallaa, S. L.: A fractional integro-differential equation of Volterra type, Math comput model 28, No. 10, 103-113 (1998) · Zbl 0993.65153 · doi:10.1016/S0895-7177(98)00158-7
[13]Momani, S.; Noor, M.: Numerical methods for fourth order fractional integro-differential equations, Appl math comput 182, 754-760 (2006) · Zbl 1107.65120 · doi:10.1016/j.amc.2006.04.041
[14]Ray, S. S.: Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method, Commun nonlinear sci numer simulat 14, 129-306 (2009) · Zbl 1221.65284 · doi:10.1016/j.cnsns.2008.01.010
[15]Nawaz, Y.: Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations, Comput math appl 61, No. 8, 2330-2341 (2011) · Zbl 1219.65081 · doi:10.1016/j.camwa.2010.10.004
[16]Saeedi, H.; Moghadam, M. Mohseni; Mollahasani, N.; Chuev, G. N.: A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order, Commun nonlinear sci numer simulat 16, No. 3, 1154-1163 (2011) · Zbl 1221.65354 · doi:10.1016/j.cnsns.2010.05.036
[17]Huang, L.; Li, X. F.; Zhao, Y. L.; Duan, X. Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method, Comput math appl 62, No. 3, 1127-1134 (2011) · Zbl 1228.65133 · doi:10.1016/j.camwa.2011.03.037
[18]Beylkin, G.; Coifman, R.; Rokhlin, V.: Fast wavelet transform and numerical algorithms I, Commun pur appl math 44, 141-183 (1991) · Zbl 0722.65022 · doi:10.1002/cpa.3160440202
[19]Yousefi, S.; Banifatemi, A.: Numerical solution of Fredholm integral equations by using CAS wavelets, Appl math comput 183, No. 1, 458-463 (2006) · Zbl 1109.65121 · doi:10.1016/j.amc.2006.05.081
[20]Yousefi, S.; Razzaghi, M.: Legendre wavelets method for the nonlinear Volterra – Fredholm integral equations, Math comput simulat 70, No. 1, 1-8 (2005) · Zbl 1205.65342 · doi:10.1016/j.matcom.2005.02.035
[21]Maleknejad, K.; Sohrabi, S.: Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets, Appl math comput 186, No. 1, 836-843 (2007) · Zbl 1119.65126 · doi:10.1016/j.amc.2006.08.023
[22]Singh, V. K.; Singh, O. P.; Pandey, K. Rajesh: Numerical evaluation of the Hankel transform by using linear Legendre multi-wavelets, Comput phys commun 179, No. 6, 424-429 (2008) · Zbl 1197.65237 · doi:10.1016/j.cpc.2008.04.006
[23]Zhu, L.; Han, H. L.: Solving Hammerstein integral equations by multi-wavelets Galerkin method, J Hainan normal univ (Nat sci) 22, No. 2, 142-145 (2009) · Zbl 1212.65537
[24]Lakestani, M.; Saray, B. N.; Dehgha, M.: Numerical solution for the weakly singular Fredholm integro-differential equations using Legendre multiwavelets, J comput appl math 235, No. 11, 3291-3303 (2011) · Zbl 1216.65185 · doi:10.1016/j.cam.2011.01.043
[25]Hsiao, C. H.; Wu, S. P.: Numerical solution of time-varying functional differential equations via Haar wavelets, Appl math comput 188, No. 1, 1049-1058 (2007) · Zbl 1118.65077 · doi:10.1016/j.amc.2006.10.070
[26]Babolian, E.; Fattahzadeh, F.: Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Appl math comput 188, No. 1, 417-426 (2007) · Zbl 1117.65178 · doi:10.1016/j.amc.2006.10.008
[27]Li, Y. L.: Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun nonlinear sci numer simulat 15, No. 9, 2284-2292 (2010) · Zbl 1222.65087 · doi:10.1016/j.cnsns.2009.09.020
[28]Saadatmandia, A.; Dehghan, M.: A new operational matrix for solving fractional-order differential equations, Comput math appl 59, 1326-1336 (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[29]Wu, J. L.: A wavelet operational method for solving fractional partial differential equations numerically, Appl math comput 214, No. 1, 31-40 (2009) · Zbl 1169.65127 · doi:10.1016/j.amc.2009.03.066
[30]Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, (1999)
[31]Rivlin, T. J.: Chebyshev polynomials, (1990) · Zbl 0734.41029
[32]Arfken, G.: Mathematical methods for physicists, (1985)
[33]Fan, Q. B.: Wavelet analysis, (2008)
[34]Zhu, L.; Wang, Y. X.; Fan, Q. B.: Numerical computation method in solving integral equation by using the second Chebyshev wavelets, , 126-130 (2011)
[35]Kilicman, A.; Zhour, Z. A. A. Al: Kronecker operational matrices for fractional calculus and some applications, Appl math comput 187, No. 1, 250-265 (2007) · Zbl 1123.65063 · doi:10.1016/j.amc.2006.08.122