zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The topological structure of adherences of regular languages. (English) Zbl 0608.68066
The topological structure of the adherences of regular languages is considered using zero-dimensional compact metric spaces, studied by R. S. Pierce [Mem. Am. Math. Soc. 130 (1972; Zbl 0253.54028)]. It is shown that the adherence of any regular language L is of such finite type, and from any automaton recognizing L a finite invariant structure, called a structural diagram by the author, is algorithmically constructible. This result implies that homeomorphism of adherences is decidable for regular languages. It is also shown that every zero- dimensional compact metrizable space of finite type is homeomorphic with the adherence of a regular language, where the language can be chosen to be two-testable in the strict sense.
Reviewer: M.Linna
MSC:
68Q45Formal languages and automata
54E45Compact (locally compact) metric spaces