zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An efficient simultaneous method for the constrained multiple-sets split feasibility problem. (English) Zbl 1282.90131
Summary: The multiple-sets split feasibility problem (MSFP) captures various applications arising in many areas. Recently, by introducing a function measuring the proximity to the involved sets, Y. Censor et al. [Inverse Probl. 21, No. 6, 2071–2084 (2005; Zbl 1089.65046)] proposed to solve the MSFP via minimizing the proximity function, and they developed a class of simultaneous methods to solve the resulting constrained optimization model numerically. In this paper, by combining the ideas of the proximity function and the operator splitting methods, we propose an efficient simultaneous method for solving the constrained MSFP. The efficiency of the new method is illustrated by some numerical experiments.
MSC:
90C25Convex programming
References:
[1]Attouch, H., Briceño-Arias, H.L., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48(5), 3246–3270 (2010) · Zbl 1218.47089 · doi:10.1137/090754297
[2]Baillon, J., Haddad, G.: Quelques propriétés des opérateurs angel-bornés et n-cycliquement monotones. Isr. J. Math. 26, 137–150 (1977) · Zbl 0352.47023 · doi:10.1007/BF03007664
[3]Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996) · Zbl 0865.47039 · doi:10.1137/S0036144593251710
[4]Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Englewood Cliffs (1989)
[5]Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002) · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[6]Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004) · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[7]Byrne, C., Censor, Y.: Proximity function minimization using multiple Bergman projections, with applications to split feasibility and Kullback-Leibler distance minimization. Ann. Oper. Res. 105, 77–98 (2001) · Zbl 1012.90035 · doi:10.1023/A:1013349430987
[8]Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994) · Zbl 0828.65065 · doi:10.1007/BF02142692
[9]Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press, New York (1997)
[10]Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005) · Zbl 1089.65046 · doi:10.1088/0266-5611/21/6/017
[11]Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006) · doi:10.1088/0031-9155/51/10/001
[12]Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 95, 155–270 (1996) · doi:10.1016/S1076-5670(08)70157-5
[13]Eckstein, J., Fukushima, M.: Some reformulation and applications of the alternating directions method of multipliers. In: Hager, W.W., et al. (eds.) Large Scale Optimization: State of the Art, pp. 115–134. Kluwer Academic, Dordrecht (1994)
[14]Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I and II. Springer, Berlin (2003)
[15]Fukushima, M.: Application of the alternating directions method of multipliers to separable convex programming problems. Comput. Optim. Appl. 2, 93–111 (1992) · Zbl 0763.90071 · doi:10.1007/BF00247655
[16]Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, pp. 299–331. North-Holland, Amsterdam (1983)
[17]Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976) · Zbl 0352.65034 · doi:10.1016/0898-1221(76)90003-1
[18]Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)
[19]Han, D.R.: Inexact operator splitting methods with self-adaptive strategy for variational inequality problems. J. Optim. Theory Appl. 132, 227–243 (2007) · Zbl 1149.49010 · doi:10.1007/s10957-006-9060-5
[20]Han, D.R., Xu, W., Yang, H.: An operator splitting method for variational inequalities with partially unknown mappings. Numer. Math. 111, 207–237 (2008) · Zbl 1159.65069 · doi:10.1007/s00211-008-0181-7
[21]He, B.S.: Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities. Comput. Optim. Appl. 42, 195–212 (2009) · Zbl 1183.65080 · doi:10.1007/s10589-007-9109-x
[22]He, B.S., Liao, L.Z., Han, D.R., Yang, H.: A new inexact alternating direction method for monotone variational inequalities. Math. Program. 92, 103–118 (2002) · Zbl 1009.90108 · doi:10.1007/s101070100280
[23]He, B.S., Liao, L.Z., Qian, M.J.: Alternating projection based prediction-correction method for structured variational inequalities. J. Comput. Math. 24, 693–710 (2006)
[24]Jiang, Z.K., Yuan, X.M.: New parallel descent-like method for solving a class of variational inequalities. J. Optim. Theory Appl. 145, 311–323 (2010) · Zbl 1197.90335 · doi:10.1007/s10957-009-9619-z
[25]Kontogiorgis, S., Meyer, R.R.: A variable-penalty alternating directions method for convex optimization. Math. Program. 83, 29–53 (1998)
[26]Qu, B., Xiu, N.H.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21, 1655–1665 (2005) · Zbl 1080.65033 · doi:10.1088/0266-5611/21/5/009
[27]Qu, B., Xiu, N.H.: A new halfspace-relaxation projection method for the split feasibility problem. Linear Algebra Appl. 428, 1218–1229 (2008) · Zbl 1135.65022 · doi:10.1016/j.laa.2007.03.002
[28]Setzer, S.: Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage. In: Lecture Notes in Comput. Sci., vol. 5567, pp. 464–476 (2009)
[29]Xu, H.K.: A variable Krasnosel’skiı-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006) · Zbl 1126.47057 · doi:10.1088/0266-5611/22/6/007
[30]Yang, Q.Z.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20, 1261–1266 (2004) · Zbl 1066.65047 · doi:10.1088/0266-5611/20/4/014
[31]Ye, C.H., Yuan, X.M.: A descent method for structured monotone variational inequalities. Optim. Methods Softw. 22, 329–338 (2007) · Zbl 1196.90118 · doi:10.1080/10556780600552693
[32]Yuan, X.M.: An improved proximal alternating direction method for structured variational inequalities. Comput. Optim. Appl. 49, 17–29 (2011) · Zbl 1219.90174 · doi:10.1007/s10589-009-9293-y
[33]Zhang, W.X., Han, D.R., Li, Z.B.: A self-adaptive projection method for solving the multiple-sets split feasibility problem. Inverse Probl. 25. doi: 10.1088/0266-5611/25/11/115001
[34]Zhao, J.L., Yang, Q.Z.: Several solution methods for the split feasibility problem. Inverse Probl. 21, 1791–1799 (2005) · Zbl 1080.65035 · doi:10.1088/0266-5611/21/5/017