zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Representations of hom-Lie algebras. (English) Zbl 06115373
Summary: In this paper, we study representations of hom-Lie algebras. In particular, the adjoint representation and the trivial representation of hom-Lie algebras are studied in detail. Derivations, deformations, central extensions and derivation extensions of hom-Lie algebras are also studied as an application.
17A30Nonassociative algebras satisfying other identities
17B99Lie algebras
[1]Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and Deformations of Hom-algebras. arXiv:1005.0456 (2010)
[2]Benayadi, S., Makhlouf, A.: Hom-Lie Algebras with Symmetric Invariant NonDegenerate Bilinear Forms. arXiv:1009.4226 (2010)
[3]Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63, 85–124 (1948) · doi:10.1090/S0002-9947-1948-0024908-8
[4]Dorfman, I.: Dirac Structures and Integrability of Nonlinear Evolution Equation. Wiley, New York (1993)
[5]Hartwig, J., Larsson, D., Silvestrov, S.: Deformations of Lie algebras using σ-derivations. J. Algebra 295, 314–361 (2006) · Zbl 1138.17012 · doi:10.1016/j.jalgebra.2005.07.036
[6]Jacobson, N.: Lie Algebras. Dover Publications, Inc. New York (1962)
[7]Larsson, D., Silvestrov, S.: Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J. Algebra 288, 321–344 (2005) · Zbl 1099.17015 · doi:10.1016/j.jalgebra.2005.02.032
[8]Larsson, D., Silvestrov, S.: Quasi-Lie algebras. Contemp. Math. 391, 241–248 (2005) · doi:10.1090/conm/391/07333
[9]Makhlouf, A., Silvestrov, S.: Notes on formal deformations of hom-associative and hom-Lie algebras. Forum Math. 22(4), 715–739 (2010)
[10]Makhlouf, A., Silvestrov, S.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2(2), 51–64 (2008) · Zbl 1184.17002 · doi:10.4303/jglta/S070206
[11]Sheng, Y.: Linear Poisson structures on $mathbb R$ . J. Geom. Phys. 57, 2398–2410 (2007) · Zbl 1131.53045 · doi:10.1016/j.geomphys.2007.08.008
[12]Yau, D.: Hom–Yang–Baxter equation, hom-Lie algebras, and quasi-triangular bialgebras. J. Phys. A: Math. Theory 42, 165202 (2009) · Zbl 1179.17001 · doi:10.1088/1751-8113/42/16/165202
[13]Yau, D.: Hom-algebras and homology. J. Lie Theory 19, 409–421 (2009)
[14]Yau, D.: Enveloping algebras of hom-Lie algebras. J. Gen. Lie Theory Appl. 2, 95–108 (2008) · Zbl 1214.17001 · doi:10.4303/jglta/S070209