zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On SA, CA, and GA numbers. (English) Zbl 1280.11049
Summary: Gronwall’s function G is defined for n>1 by G(n)=σ(n) nloglogn where σ(n) is the sum of the divisors of n. We call an integer N>1 a GA1 number if N is composite and G(N)G(N/p) for all prime factors p of N. We say that N is a GA2 number if G(N)G(aN) for all multiples aN of N. In [Integers 11, No. 6, 753–763, A33 (2011; Zbl 1235.11082)], we used Robin’s and Gronwall’s theorems on G to prove that the Riemann Hypothesis (RH) is true if and only if 4 is the only number that is both GA1 and GA2. In the present paper, we study GA1 numbers and GA2 numbers separately. We compare them with superabundant (SA) and colossally abundant (CA) numbers (first studied by Ramanujan). We give algorithms for computing GA1 numbers; the smallest one with more than two prime factors is 183783600, while the smallest odd one is 1058462574572984015114271643676625. We find nineteen GA2 numbers 5040, and prove that a GA2 number N>5040 exists if and only if RH is false, in which case N is even and >10 8576 .
MSC:
11M26Nonreal zeros of ζ(s) and L(s,χ); Riemann and other hypotheses
11A41Elementary prime number theory
11Y55Calculation of integer sequences
Software:
OEIS
References:
[1]Alaoglu, L., Erdos, P.: On highly composite and similar numbers. Trans. Am. Math. Soc. 56, 448–469 (1944)
[2]Briggs, K.: Abundant numbers and the Riemann hypothesis. Exp. Math. 15, 251–256 (2006). http://www.expmath.org/expmath/volumes/15/15.2/Briggs.pdf (2006). Accessed 23 October 2011 · Zbl 1149.11041 · doi:10.1080/10586458.2006.10128957
[3]Caveney, G., Nicolas, J.-L., Sondow, J.: Robin’s theorem, primes, and a new elementary reformulation of the Riemann Hypothesis. Integers 11, A33 (2011). http://www.integers-ejcnt.org/l33/l33.pdf (2011). Accessed 23 October 2011 · Zbl 1235.11082 · doi:10.1515/INTEG.2011.057
[4]Choie, Y.-J., Lichiardopol, N., Moree, P., Sole, P.: On Robin’s criterion for the Riemann Hypothesis. J. Théor. Nombres Bordeaux 19, 351–366 (2007). http://arxiv.org/abs/math/0604314 (2006). Accessed 23 October 2011
[5]Dusart, P.: Estimates of some functions over primes without R.H. http://arxiv.org/abs/1002.0442v1 (2010). Accessed 23 October 2011
[6]Erdos, P., Nicolas, J.-L.: Répartition des nombres superabondants. Bull. Soc. Math. Fr. 103, 65–90 (1975). http://www.numdam.org/item?id=BSMF_1975_103_65_0 (1975). Accessed 23 October 2011
[7]Gronwall, T.H.: Some asymptotic expressions in the theory of numbers. Trans. Am. Math. Soc. 14, 113–122 (1913) · doi:10.1090/S0002-9947-1913-1500940-6
[8]Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. In: Heath-Brown, D.R., Silverman, J.H. (eds.) 6th edn. Oxford University Press, Oxford (2008)
[9]Lagarias, J.C.: An elementary problem equivalent to the Riemann hypothesis. Am. Math. Mon. 109, 534–543 (2002) · Zbl 1098.11005 · doi:10.2307/2695443
[10]Littlewood, J.E.: Sur la distribution des nombres premiers. C. R. Acad. Sci. Paris Sér. I Math. 158, 1869–1872 (1914)
[11]Nicolas, J.-L., Robin, G.: Majorations explicites pour le nombre de diviseurs de N. Can. Math. Bull. 26, 485–492 (1983) · Zbl 0516.10037 · doi:10.4153/CMB-1983-078-5
[12]Ramanujan, S.: Highly composite numbers. Proc. Lond. Math. Soc. 14, 347–400 (1915). Also In: Collected Papers, pp. 78–128. Cambridge University Press, Cambridge (1927) · doi:10.1112/plms/s2_14.1.347
[13]Ramanujan, S.: Highly composite numbers, annotated and with a foreword by J.-L. Nicolas and G. Robin. Ramanujan J. 1, 119–153 (1997) · Zbl 0917.11043 · doi:10.1023/A:1009764017495
[14]Robin, G.: Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures Appl. 63, 187–213 (1984)
[15]Robin, G.: Sur l’ordre maximum de la fonction somme des diviseurs. In: Séminaire Delange-Pisot-Poitou Paris 1981–1982, pp. 233–242. Birkhäuser, Boston (1983)
[16]Schoenfeld, L.: Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II. Math. Comput. 30, 337–360 (1976)
[17]Sloane, N.J.A.: The on-line encyclopedia of integer sequences. http://oeis.org (2011). Accessed 10 December 2011