zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Influence of noise on the function of a ”physiological” neural network. (English) Zbl 0616.92004

A model neural network with stochastic elements in its millisecond dynamics is investigated. The network consists of neuronal units which are modelled in close analogy to physiological neurons. Dynamical variables of the network are the cellular potentials, axonic currents and synaptic efficacies.

The dynamics of the synapses obeys a modified Hebbian rule and, as proposed by C. v.d. Malsburg [see Nervous structures with dynamical links. Ber. Bunsenges. Phys. Chemie 6, 703-710 (1985)], develop on a time scale of a tenth of a second. In a previous publication [ibid. 54, 319- 335 (1986; Zbl 0591.92010)] we have confirmed that the resulting noiseless auto-associative network is capable of the well-known computational tasks of formal associative networks.

In the present paper we demonstrate that random fluctuations of the membrane potential improve the performance of the network. In comparison to a deterministic network a noisy neural network can learn at lower input frequencies and with lower average neural firing rates. The electrical activity of a noisy network is very reminiscent of that observed by physiological recordings.

We demonstrate furthermore that associative storage reduces the effective dimension of the phase space in which the electrical activity of the network develops.

MSC:
92CxxPhysiological, cellular and medical topics
94C99Circuits, networks
References:
[1]Abeles M (1982) Local cortical circuits. Springer, Berlin Heidelberg New York
[2]Amit, DJ, Gutfreund H, Sompolinsky H (1985a) Spin glass models of neural networks. Phys Rev A 32:1007 · doi:10.1103/PhysRevA.32.1007
[3]Amit DJ, Gutfreund H, Sompolinsky H (1985b) Storing infinite numbers of patterns in a spin glas model of neural networks. Phys Rev Lett 55:1530 · doi:10.1103/PhysRevLett.55.1530
[4]Amit DJ, Gutfreund H, Sompolinsky H (1987) Statistical mechanics of neural networks near saturation. Ann Phys 173:30–67 · doi:10.1016/0003-4916(87)90092-3
[5]Babloyantz A (1985) Strange attractors in the dynamics of brain activity. In: Haken H (ed) Complex Systems-operational approaches. Springer, Berlin Heidelberg New York, pp 116–122
[6]Babloyantz A, Destexhe A (1986) Low-dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci USA 83:3513–3517 · doi:10.1073/pnas.83.10.3513
[7]Bienenstock E (1984) Dynamics of central nervous system. In: Beckmann M, Krelle W (eds) Dynamics of macrosystems. Springer, Berlin Heidelberg New York, pp 3–20
[8]Buhmann J (1987) Thesis, Technical University of Munich (in preparation)
[9]Buhmann J, Schulten K (1986) Associative recognition and storage in a model network of physiological neurons. Biol Cybern 54:319–335 · Zbl 0591.92010 · doi:10.1007/BF00318428
[10]Changeux JP, Heidmann T, Patte P (1984) Learning by selection. In: Marler T, Terrace HS (eds) The biology of learning. Springer, Heidelberg Berlin New York, pp 115–133
[11]Cooper LN (1973) Proceedings of the Nobel Symposium on collective properties of physical systems. Academic Press, New York, pp 252–264
[12]Dvorak I, Siska J (1986) On some problems encountered in the estimation of the correlation dimension of the EEG. Phys Lett A 118:63–66 · doi:10.1016/0375-9601(86)90648-1
[13]Ebeling W, Feistl R (1986) Physik der Selbstorganisation und Evolution. Akademie Verlag, Berlin
[14]Freeman WJ (1977) Spatial properties of an EEG Event in the ollactory bulb and cortex. Electrenc Clin Neurophys 44:586–605 · doi:10.1016/0013-4694(78)90126-8
[15]Goel NS, Richter-Dyn N (1974) Stochastic models in biology. Academic Press, New York San Francisco London
[16]Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of long-term memory–a molecular framework. Nature 322:419–422 · doi:10.1038/322419a0
[17]Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica 9D:189–208
[18]Grossberg S (1972) Pattern learning by functional-differential neural networks with arbitrary path weights. In: Schmitt K (ed) Delay and functional differential equations and their applications. Academic Press, New York, pp 121–159
[19]Hebb DO (1949) Organisation of behavior. Wiley, New York
[20]Hinton GE, Sejnowski TJ, Ackley DH (1984) Boltzmann machines: constraint satisfaction networks that learn. Tech Rep No CMU-CS-84-119. Pittsburgh, PA: Carnegie-Mellon Univ
[21]Holden AV (1976) Models of the stochastic activity of neurones. Springer, Berlin Heidelberg New York
[22]Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558 · doi:10.1073/pnas.79.8.2554
[23]Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA 81:3088–3092 · doi:10.1073/pnas.81.10.3088
[24]Kandel ER, Schwartz JR (1982) Molecular biology of learning: modulation of transmitter release. Science 218:433–443 · doi:10.1126/science.6289442
[25]Kelso SR, Ganong AH, Brown TH (1986) Hebbian synapses inHippocampus. Proc Natl Acad Sci USA 83:5326–5330 · doi:10.1073/pnas.83.14.5326
[26]Kinzel W (1985) Learning and pattern recognition in spin glass models. Z Phys B – Condensed Matter 60:205–213 · doi:10.1007/BF01304440
[27]Koch C, Marroquin J, Yuille A (1986) Analog ”neuronal” networks in early vision. Proc Natl Acad Sci USA 83:4263–4267 · doi:10.1073/pnas.83.12.4263
[28]Kohonen T (1984) Selforganization and associative memory. Springer, Berlin Heidelberg New York
[29]Kohonen T, Oja E, Lehtiö P (1981) Storage and processing of information in distributed associative memory systems. In: Hinton G, Anderson JA (eds) Parallel models of associative memory. Lawrence Erlbaum Associatives, Hillsdale, New Jersey
[30]Little WA (1974) The existence of persistent States in the brain. Math Biosci 19:101–120 · Zbl 0272.92011 · doi:10.1016/0025-5564(74)90031-5
[31]Little WA, Shaw GL (1975) A statistical theory of short and long term memory. Behav Biol 14:115–133 · doi:10.1016/S0091-6773(75)90122-4
[32]Malsburg Cvd (1981) The correlation theory of brain function. Internal report 81/2, Dept. Neurobiologie, MPI f. Biophysikalische Chemie, Göttingen
[33]Malsburg Cvd (1985) Nervous structures with dynamical links. Ber Bunsenges Phys Chemie 6:703–710
[34]Malsburg Cvd, Bienenstock E (1985) Statistical coding and short-term synaptic plasticity: a scheme for knowledge representation in the brain. In: Bienenstock E, Fogelman Soulié F, Weisbuch G (eds) Disordered systems and biological organization. Springer, Berlin Heidelberg New York, pp 247–272
[35]Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536 · doi:10.1038/323533a0
[36]Sampath G, Srinivasan SK (1977) Stochastic models for spike trains of single neurons. Springer, Berlin Heidelberg New York
[37]Schulten K, Schulten Z, Szabo A (1981) Dynamics of reactions involving diffusive barrier crossing. J Chem Phys 74:4426–4432 · doi:10.1063/1.441684
[38]Shaw G, Vasudevan R (1974) Persistent states of neural networks and the random nature of synaptic transmission. Math Biosci 21:207 · Zbl 0293.92005 · doi:10.1016/0025-5564(74)90015-7