zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical computation of Tricomi’s psi function by the trapezoidal rule. (English) Zbl 0618.65009

The trapezoidal rule is applied to the numerical calculation of the integral representation of Tricomi’s psi function Ψ(a,c;x)=2x 1-c /Γ(a) 0 + e -u 2 (u 2a-1 /(x+u 2 ) 1-c+a )du for a,x + , c. The unexpectedly high accuracy is explained by means of a careful investigation in the complex field of the Euler-Maclaurin formula, and particularly of its remainder terms, considered as an extension of the trapezoidal rule. Since the same method has been used previously to evaluate the complementary incomplete gamma function [the authors, Numer. Math. 50, 419-428 (1987; Zbl 0593.65017)], the Euler gamma function and the digamma function, the present paper limits itself to quote the main features of the method and describes fully the peculiarities of this application.

A simple and efficient numerical procedure for obtaining values of the psi function is given; moreover, to reduce the amount of calculation, an iterative algorithm for the evaluation of the trapezoidal rule, similar to Horner’s scheme for polynomials, is suggested.

65D20Computation of special functions, construction of tables
33B15Gamma, beta and polygamma functions
65B15Euler-Maclaurin formula (numerical analysis)
[1]Tricomi, F. G.: Funzioni Ipergeometriche Confluenti. Roma: Cremonese 1954.
[2]Slater, L. J.: Confluent Hypergeometric Functions. Cambridge: Cambridge Univ. Press 1960.
[3]Luke, Y. L.: The Special Functions and their Approximations, Vols. I, II. New York: Academic Press 1969.
[4]Davis, P. J., Rabinowitz, P.: Methods of Numerical Integration, 2nd ed. New York: Academic Press 1984.
[5]Allasia, G., Besenghi, R.: Numerical calculation of incomplete gamma functions by the trapezoidal rule. Num. Math.50, 419–428 (1987). · Zbl 0593.65017 · doi:10.1007/BF01396662
[6]Allasia, G., Besenghi, R.: Sul calcolo numerico delle funzioni gamma e digamma mediante la formula del trapezio. To appear on Boll Unione Mat. Italiana.
[7]Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions. New York: Dover Publications 1970.
[8]Wimp, J.: On the computation of Tricomi’s Ψ function. Computing13, 195–203 (1974). · Zbl 0294.65010 · doi:10.1007/BF02241712
[9]Temme, N. M.: The numerical computation of the confluent hypergeometric functionU(a, b; z). Num. Math.41, 63–82 (1983). · Zbl 0489.33001 · doi:10.1007/BF01396306
[10]Luke, Y. L.: Mathematical Functions and their Approximations. New York: Academic Press 1975.