×

On the flow of a non-Newtonian fluid between rotating, coaxial discs. (English) Zbl 0619.76001

This paper is concerned with the torsional flow of an Oldroyd-B fluid. The kinematics is restricted to that commonly referred to as Von Kármán kinematics. These restrictions allow the reduction of the problem to a set of ordinary differential equations. The problem is then solved with finite differences using well-known branch following and jumping techniques.
The solution of this set of equations is discussed, and it is found that the solutions either lose stability at subcritical bifurcation points, or fold back on themselves at limit points. Either of these will cause a high Weissenberg number problem. Comparisons are also made with the known solutions to the Newtonian problem by considering small values of the Weissenberg number.

MSC:

76A05 Non-Newtonian fluids
76M99 Basic methods in fluid mechanics
76U05 General theory of rotating fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. von K?rm?n, ZAMM1, 232 (1921). · doi:10.1002/zamm.19210010317
[2] R. Keunings, J. Non-Newtonian Fluid. Math.20, 209 (1986). · Zbl 0589.76021 · doi:10.1016/0377-0257(86)80022-2
[3] R. C. Armstrong, R. A. Brown and B. Caswell, J. Non-Newtonian Fluid Mech.16, 1 (1984). · doi:10.1016/0377-0257(84)85001-6
[4] N. Phan-Thien, J. Non-Newtonian Fluid Mech.13, 325 (1983). · Zbl 0567.76013 · doi:10.1016/0377-0257(83)80027-5
[5] R. R. Huilgol and H. B. Keller, J. Non-Newtonian Fluid Mech.18, 101 (1985). · Zbl 0592.76015 · doi:10.1016/0377-0257(85)85015-1
[6] J. G. Oldroyd, Proc. Roy. Soc. A245, 278 (1958). · Zbl 0080.38805 · doi:10.1098/rspa.1958.0083
[7] D. V. Boger, J. Non-Newtonian Fluid Mech.3, 87 (1978). · doi:10.1016/0377-0257(77)80014-1
[8] A. C. Pipkin and R. I. Tanner, Mechanics Today1, 262 (1972).
[9] G. L. Mellor, P. J. Chapple and V. K. Stokes, J. Fluid Mech.31, 113 (1968). · Zbl 0157.57302 · doi:10.1017/S0022112068000054
[10] S. V. Parter and K. R. Rajagopal, Arch. Rational Mech. Anal.86, 305 (1984). · Zbl 0594.76022 · doi:10.1007/BF00280030
[11] M. Renardy, Res. Report. Centre for Math. Anal. A.N.U. (1984).
[12] H. B. Keller and R. K. Szeto, Computing Methods in Applied Sciences and Engineering (Ed. R. Glowinski and J. L. Lions) (1980).
[13] H. B. Keller, Applications of Bifurcation Theory (Ed. P. Rabinowitz) (1977). · Zbl 0581.65043
[14] J. M. Feir, Ph.D. Thesis, Cal. Tech. Pasadena, CA (1985).
[15] H. B. Keller and W. F. Langford, Arch. Rat. Mech. Anal.48, 83 (1972). · Zbl 0249.47058 · doi:10.1007/BF00250427
[16] M. G. Crandall and P. H. Rabinowitz, J. Functional Analysis8, 321 (1971). · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[17] H. B. Keller, Computing Methods in Applied Sciences and Engineering (Ed. R. Glowinski and J. L. Lions) (1982).
[18] R. Weiss, Math, of Comp.29, 746 (1975). · doi:10.1090/S0025-5718-1975-0383763-7
[19] R. I. Tanner, Engineering Rheology, Oxford Univ. Press (1985).
[20] N. S. Berman and M. A. Pasch, J. Rheology30, 441 (1986). · doi:10.1122/1.549903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.