zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamical behavior of epidemiological models with nonlinear incidence rates. (English) Zbl 0621.92014

Epidemiological models with nonlinear incidence rates λI p S q show a much wider range of dynamical behaviors than do those with bilinear incidence rates λ IS. These behaviors are determined mainly by p and λ, and secondarily by q.

For such models, there may exist multiple attractive basins in phase space; thus whether or not the disease will eventually die out may depend not only upon the parameters, but also upon the initial conditions. In some cases, periodic solutions may appear by Hopf bifurcation at critical parameter values.

92D25Population dynamics (general)
34D99Stability theory of ODE
34C25Periodic solutions of ODE
[1]Bailey, N. T. J.: The mathematical theory of infectious diseases and its applications 2nd edn. London: Griffin 1975
[2]Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42, 41-61 (1978) · Zbl 0398.92026 · doi:10.1016/0025-5564(78)90006-8
[3]Carr, J.: Applications of centre manifold theory. Berlin Heidelberg New York: Springer 1981
[4]Cunningham, J.: A deterministic model for measles. Z. Naturforsch. 34c, 647-648 (1979)
[5]Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields, pp. 150-156. Berlin Heidelberg New York Tokyo: Springer 1983
[6]Hale, J. K.: Ordinary differential equations. New York: Wiley-Interscience 1969
[7]Hethcote, H. W.: Qualitative analyses of communicable disease models. Math. Biosci. 28, 335-356 (1976) · Zbl 0326.92017 · doi:10.1016/0025-5564(76)90132-2
[8]Hethcote, H. W., Stech, H. W., Van den Driessche, P.: Stability analysis for models of diseases without immunity. J. Math. Biol. 13, 185-198 (1981a)
[9]Hethcote, H. W., Stech, H. W., Van den Driessche, P.: Periodicity and stability in epidemic models: a survey. In: Cooke, K. L. (ed.) Differential equations and applications in ecology, epidemics, and population problems, pp. 65-82. New York London Toronto Sydney San Francisco: Academic Press 1981b
[10]Liu, W. M., Levin, S. A.: Influenza and some related mathematical models. In: Levin, S. A., Hallam, T., Gross, L. (eds.) Applied mathematical ecology. Berlin Heidelberg New York: Springer
[11]Liu, W. M., Levin, S. A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23, 187-204 (1986) · Zbl 0582.92023 · doi:10.1007/BF00276956
[12]Liu, W. M.: Dynamics of epidemiological models-recurrent outbreaks in autonomous systems. Ph.D. Thesis, Cornell University (1987)
[13]Marsden, J. E., McCracken, M.: The Hopf bifurcation and its applications. Berlin Heidelberg New York: Springer 1976
[14]Saunders, I. W.: A model for myxomatosis. Math. Biosci. 48, 1-15 (1980) · Zbl 0422.92024 · doi:10.1016/0025-5564(80)90012-7
[15]Wang, F. J. S.: Asymptotic behavior of some deterministic epidemic models. SIAM J. Math. Anal. 9, 529-534 (1978) · Zbl 0417.92020 · doi:10.1137/0509034
[16]Wilson, E. B., Worcester, J.: The law of mass action in epidemiology. Proc. Natl. Acad. Sci. USA 31, 24-34 (1945) · doi:10.1073/pnas.31.1.24
[17]Wilson, E. B., Worcester, J.: The law of mass action in epidemiology II. Proc. Natl. Acad. Sci. USA 31, 109-116 (1945) · doi:10.1073/pnas.31.4.109