zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multivariate Padé approximants revisited. (English) Zbl 0622.65011
A general definition of multivariate Padé approximants is given which includes previous definitions of several authors as special cases. The coefficients of the polynomials in the numerator and the denominator of the Padé approximant are determined by a system of linear equations. A representation in terms of determinants is given. By considering suitable intermediate approximation problems, the multivariate Padé approximant can be calculated by a recursive algorithm.
Reviewer: R.Wegmann
MSC:
65D15Algorithms for functional approximation
41A21Padé approximation
41A63Multidimensional approximation problems
References:
[1]C. Brezinski,A general extrapolation algorithm, Publication ANO 9, Université de Lille, 1979.
[2]J. Chisholm,N-variable rational approximants. In [14], 23–42.
[3]A. Cuyt,Multivariate Padé approximants, Journ. Math. Anal. Appl. 96 (1), 1983, 238–293. · Zbl 0525.41017 · doi:10.1016/0022-247X(83)90041-0
[4]A. Cuyt,Padé approximants for operators: theory and applications, Lecture Notes in Mathematics 1065, Springer Verlag, Berlin, 1984.
[5]A. Cuyt,A review of multivariate Padé approximation theory, J. Comp. Appl. Math. 12 & 13 (1985), 221–232. · Zbl 0572.41010 · doi:10.1016/0377-0427(85)90019-6
[6]A. Cuyt and B. Verdonk,General order Newton-Padé approximants for multivariate functions, Num. Math. 43, 1984, 293–307. · Zbl 0513.41008 · doi:10.1007/BF01390129
[7]P. Graves Morris, R. Hughes Jones and G. Makinson,The calculation of some rational approximants in two variables, Journ. Inst. Math. Appl. 13, 1974, 311–320.
[8]R. Hughes Jones,General rational approximants in n variables, Journ. Approx. Theory 16, 1976, 201–233. · Zbl 0316.41011 · doi:10.1016/0021-9045(76)90050-2
[9]J. Karlsson and H. Wallin,Rational approximation by an interpolation procedure in several variables. In [14], 83–100.
[10]D. Levin,General order Padé-type rational approximants defined from double power series, Journ. Inst. Math. Appl. 18, 1976, 1–8. · Zbl 0352.41015 · doi:10.1093/imamat/18.1.1
[11]D. Levin,On accelerating the convergence of infinite double series and integrals, Math. Comp. 35, 1980, 1331–1345. · doi:10.1090/S0025-5718-1980-0583511-3
[12]C. Lutterodt,A two-dimensional analogue of Padé approximant theory, Journ. Phys. A 7, 1974, 1027–1037.
[13]C. Lutterodt,Rational approximants to holomorphic functions in n dimensions, Journ. Math. Anal. Appl. 53, 1976, 89–98. · Zbl 0319.32005 · doi:10.1016/0022-247X(76)90147-5
[14]E. Saff and R. Varga,Padé and Rational Approximations: Theory and Applications, Academic Press, London, 1977.