zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An existence theorem for nonlinear Volterra integral equation with deviating argument. (English) Zbl 0625.45013

The paper deals with nonlinear Volterra integral equations with deviating argument

x(t)=h(t)+ 0 t K(t,s,x(H(s)))ds,t0,

in C g spaces: C g (R + ,R n )={x:R 0 R n , continuous and |x(t)|/g(t) bounded on R + }. It is assumed that g is a continuous positive function on R + . Under various conditions on the data it is shown that the equation under discussion has at least one solution in a convenient C g space (using Schauder fixed point theorem). The classical case of Volterra equation is covered by the result.

Reviewer: C.Corduaneanu

MSC:
45G10Nonsingular nonlinear integral equations
45D05Volterra integral equations
References:
[1]Banas J. and Goebel K.,Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Math., M. Dekker Inc., Vol. 60 (1980), New York and Basel.
[2]Bielecki A.,Une remarque sur le méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci., Cl. III,4 (1956), 261–264.
[3]Corduneanu C.,Integral equations and stability of feedback systems, Academic Press, New York 1973.
[4]Czerwik S.,The existence of global solutions of a functional-differential equation, Colloq. Math.36 (1976), 121–125.
[5]Driver R. D.,Ordinary and delay differential equations, Applied Math. Sciences 20, Springer Verlag 1977.
[6]Hale J.,Functional differential equations, Springer Verlag 1971.
[7]Kamont Z. and Kwapisz M.,On non-linear Volterra integral-functional equations in several variables, Ann. Polon. Math.40 (1981), 1–29.
[8]Kwapisz M.,On the existence and uniqueness of solutions of certain integral-functional equation, Ann. Polon. Math31 (1975), 23–41.
[9]Kwapisz M. and Turo J.,On the existence and uniqueness of solutions of Darboux problem for partial differential-integral equations, Colloq. Math.29 (1974), 295–318.
[10]Kwapisz M. and Turo J.,Some integral-functional equations, Funkcial. Ekvac.18 (1975), 107–162.
[11]Morro A.,A pointwise estimate for the solution to a linear Volterra integral equation, Atti Acc. Lincei Rend. fis., Vol. LXXIV (1983), 12–18.
[12]Myŝkis A. D.,Línear differential equations with retarded argument, Moscow 1972 (in Russian).
[13]Nowicka K.,On the existence of solutions for some integral-functional equation, Comment. Math.23 (1983), 279–293.
[14]Pelczar A.,Some functional differential equations, Dissert. Math.100 (1973), 3–110.
[15]Zima K.,Sur l’existence des solutions d’une équation intégro-différentialle, Ann. Polon. Math.19 (1973), 181–187.