zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Compact matrix pseudogroups. (English) Zbl 0627.58034
The compact matrix pseudogroup is a non-commutative compact space endowed with a group structure. The precise definition is given and a number of examples is presented. Among them we have compact group of matrices, duals of discrete groups and twisted (deformed) SU(N) groups. The representation theory is developed. It turns out that the tensor product of representations depends essentially on their order. The existence and the uniqueness of the Haar measure is proved and the orthonormality relations for matrix elements of irreducible representations are derived. The form of these relations differs from that in the group case. This is due to the fact that the Haar measure on pseudogroups is not central in general. The corresponding modular properties are discussed. The Haar measures on the twisted SU(2) group and on the finite matrix pseudogroup are found.

58Z05Applicatons of global analysis to physics
58H05Pseudogroups and differentiable groupoids on manifolds
[1]Barut, A.O., Raczka, R.: Theory of group representations and applications. Warszawa: PWN ? Polish Scientific Publishers 1977
[2]Bragiel, K.: TwistedSU(3) group (in preparation)
[3]Dixmier, J.: LesC*-alg?bres et leurs representations. Paris: Gauthier, Villars 1964
[4]Drinfeld, V.S.: Quantum groups, will appear in Proceedings ICM ? 1986
[5]Enock, M., Schwartz, J.M.: Une dualit? dans les alg?bres de von Neumann. Bull. Soc. Math. France, Supl?ment m?moire44, 1-144 (1975)
[6]Schwartz, J.M.: Sur la structure des alg?bres des Kac I. J. Funct. Anal.34, 370-406 (1979) · Zbl 0431.46044 · doi:10.1016/0022-1236(79)90083-1
[7]Kac, G.I.: Ring-groups and the principle of duality I and II. Trudy Moskov. Mat. Obsc.12, 259-301 (1963);13, 84-113 (1965)
[8]Kruszynski, P., Woronowicz, S.L.: A noncommutative Gelfand-Naimark theorem. J. Oper. Theory8, 361-389 (1982)
[9]Lang, S.: Algebra. Reading, MA: Addison-Wesley 1965
[10]Maurin, K.: Analysis I. Warsaw-Dordrecht: PWN ? Polish Scientific Publishers, Dordrecht: Reidel 1976
[11]Ocneanu, A.: A Galois theory for operator algebras. Preprint
[12]Takesaki, M.: Duality and von Neumann algebras. Lecture notes, Fall 1970, Tulane University, New Orleans, Louisiana
[13]Tatsuuma, N.: An extension of AKHT theory of locally compact groups. Kokyuroku RIMS, 314 (1977)
[14]Vallin, J.M.:C*-alg?bres de Hopf etC*-alg?bres de Kac. Proc. Lond. Math. Soc. (3),50, 131-174 (1985) · Zbl 0577.46063 · doi:10.1112/plms/s3-50.1.131
[15]Vaksman, L.L., Soibelman, J.S.: The algebra of functions on quantum groupSU(2) (to appear)
[16]Weyl, H.: The classical groups, their invariants and representations. Princeton, NS: Princeton University Press 1946
[17]Woronowicz, S.L.: On the purification of factor states. Commun. Math. Phys.28, 221-235 (1972) · Zbl 0244.46075 · doi:10.1007/BF01645776
[18]Woronowicz, S.L.: Pseudospaces, pseudogroups, and Pontryagin duality. Proceedings of the International Conference on Mathematics and Physics, Lausanne1979. Lecture Notes in Physics, Vol. 116. Berlin, Heidelberg, New York: Springer 1980
[19]Woronowicz, S.L.: TwistedSU(2) group. An example of a non-commutative differential calculus, will appear in RIMS ? Publ. University of Kyoto (1987)
[20]Woronowicz, S.L.: Tannaka-Krein duality for compact matrix pseudogroups. TwistedSU(N) groups (in preparation)
[21]Woronowicz, S.L.: Differential calculus on compact matrix pseudogroups (in preparation)