zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Spline finite difference methods for singular two point boundary value problems. (English) Zbl 0642.65062
The authors consider the following class of singular two-point boundary value problems x -α (x α u ' ) ' =f(x,u), 0<x1 with u(0)=A, u(1)=B or u ' (0)=0, u(1)=B. Here α(0,1) or α takes values 1 or 2, f may be continuous, f/u may exist, be continuous and f/u0. Then - as is well known - the boundary value problem has a unique solution. For the solution of these problems the authors construct splines and three-point finite difference methods using these splines. They show that such schemes are of O(h 2 ) under appropriate conditions. The advantage of such spline approximation is that the boundary value problem may be solved with a particular steplength h whereas intermediate values can be computed using the spline. On the basis of some numerical experiments the authors conclude that the discussed methods are robust and give good approximations at the intermediate points.
Reviewer: H.Ade

65L10Boundary value problems for ODE (numerical methods)
34B15Nonlinear boundary value problems for ODE
[1]Chawla, M.M., Katti, C.P.: Finite difference methods and their convergence for a class of singular two point boundary value problems. Numer. Math.39, 341-350 (1982) · Zbl 0489.65055 · doi:10.1007/BF01407867
[2]Ciarlet, P.G., Natterer, F., Varga, R.S.: Numerical methods of high order accuracy for singular nonlinear boundary value problems. Numer. Math.15, 87-99 (1970) · Zbl 0211.19103 · doi:10.1007/BF02165374
[3]Gustafsson, B.: A numerical method for solving singular boundary value problems. Numer. Math.21, 328-344 (1973) · Zbl 0255.65032 · doi:10.1007/BF01436387
[4]Jain, M.K., Iyengar, S.R.K., Subramanyam, G.S.S.: Variable mesh methods for the numerical solution of two point singular perturbation problems. Comput. Methods Appl. Mech. Eng.42, 273-286 (1984) · Zbl 0528.65044 · doi:10.1016/0045-7825(84)90009-4
[5]Jamet, P.: On the convergence of finite difference approximations to one-dimensional singular boundary value problems. Numer. Math.14, 355-378 (1970) · Zbl 0179.22103 · doi:10.1007/BF02165591
[6]Kubí?ek, K., Hlavá?ek, V.: Numerical solution of nonlinear boundary value problems with applications. Englewood Cliffs, New Jersey: Prentice Hall 1983
[7]Reddien, G.W.: Projection methods and singular two point boundary value problems. Numer. Math.21, 193-205 (1973) · Zbl 0281.65048 · doi:10.1007/BF01436623
[8]Reddien, G.W., Schumaker, L.L.: On a collocation method for singular two point boundary value problems. Numer. Math.25, 427-432 (1976) · Zbl 0372.65033 · doi:10.1007/BF01396339
[9]Russell, R.D., Shampine, L.F.: Numerical methods for singular boundary value problems. SIAM. J. Numer. Anal.12, 13-35 (1975) · Zbl 0294.65047 · doi:10.1137/0712002