zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Correction of finite element eigenvalues for problems with natural or periodic boundary conditions. (English) Zbl 0646.65070
Let λ 1 ,λ 2 ,··. denote the eigenvalues of the Sturm- Liouville problem -y '' +qy=λy, δ 1 y ' (0)+σ 2 y(0)=σ 3 y ' (π)+σ 4 y(π)=0· For the case of natural and periodic boundary conditions and a finite element approximation on a uniform mesh of width h=π/n an asymptotic correction technique, developed by J. W. Paine, F. R. de Hoog and R. S. Anderssen [Computing 26, 123-139 (1981; Zbl 0436.65063)] reduces the error of the approximation of λ k from O(k 4 h 2 ) to O(kh 2 ). As numerical results show, the new technique is useful already for low values of k.
Reviewer: L.Elsner

MSC:
65L15Eigenvalue problems for ODE (numerical methods)
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
34L99Ordinary differential operators
References:
[1]R. S. Anderssen and F. R. De Hoog,On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems with general boundary conditions, Tech. Rep. CMA-RO5-82, Centre for Math. Analysis, Australian National Univ., 1982.
[2]R. S. Anderssen and F. R. De Hoog,On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems with general boundary conditions, BIT 24 (1984), 401–412. · Zbl 0552.65065 · doi:10.1007/BF01934900
[3]A. L. Andrew,Numerical solution of eigenvalue problems for ordinary differential equations, Computational Techniques and Applications: CTAC-83, J. Noye and C. Fletcher, eds., North-Holland, Amsterdam, 1984, 841–852.
[4]A. L. Andrew,Asymptotic correction of finite difference eigenvalues, Computational Techniques and Applications: CTAC-85, J. Noye and R. May, eds., North-Holland, Amsterdam 1986, 333–341.
[5]A. L. Andrew and J. W. Paine,Correction of Numerov’s eigenvalue estimates, Numer. Math. 47 (1985), 289–300. · Zbl 0554.65060 · doi:10.1007/BF01389712
[6]A. L. Andrew and J. W. Paine,Correction of finite element estimates for Sturm-Liouville eigenvalues, Numer. Math. 50 (1986), 205–215. · Zbl 0588.65062 · doi:10.1007/BF01390430
[7]F. Chatelin,Spectral Approximation of Linear Operators. Academic Press, New York, 1983.
[8]M. S. P. Eastham,The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburgh, 1973.
[9]D. J. Evans,Numerical solution of the Sturm-Liouville problem with periodic boundary conditions, Lecture Notes in Math. 228, Springer, Berlin 1971, 277–289.
[10]H. Hochstadt,Asymptotic estimates for the Sturm-Liouville spectrum, Commun. Pure Appl. Math. 14 (1961), 749–764. · Zbl 0102.07403 · doi:10.1002/cpa.3160140408
[11]H. Hochstadt and W. Goldberg,On the integrability of Hill’s equations with finite band spectra, J. Math. Anal. Appl. 94 (1983), 366–376. · Zbl 0519.34018 · doi:10.1016/0022-247X(83)90069-0
[12]J. Paine,A numerical method for the inverse Sturm-Liouville problem, SIAM J. Sci. Stat. Comput. 5 (1984), 149–156. · Zbl 0536.65067 · doi:10.1137/0905011
[13]J. W. Paine, Unpublished numerical results, 1985.
[14]J. W. Paine, F. R. De Hoog and R. S. Anderssen,On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems, Computing 26 (1981), 123–139. · Zbl 0445.65087 · doi:10.1007/BF02241779
[15]M. Porter and E. L. Reiss,A numerical method for ocean-acoustic normal modes, J. Acoust. Soc. Amer. 76 (1984), 244–252. · Zbl 0583.76095 · doi:10.1121/1.391101
[16]P. Rabinowitz,The convergence of interpolatory product integration rules, BIT 26 (1986), 131–134. · Zbl 0629.41002 · doi:10.1007/BF01939370
[17]G. Strang and G. J. Fix,An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, 1973.
[18]J. H. Wilkinson,The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.