×

On the application of mixed finite element methods to the wave equations. (English) Zbl 0646.65083

This paper examines the convergence of some semi-discrete approximations to the wave equation in a general space which includes the so-called Raviart-Thomas space as a special case. In addition, a brief discussion of the solution of the ensuing system of ordinary differential equations using the implicit Euler method is presented.
Reviewer: K.Burrage

MSC:

65N40 Method of lines for boundary value problems involving PDEs
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
35L05 Wave equation
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] R. ALEX ANDER, Diagonally implicity Runge-Kutta methods for stiff O.D.E.’s, SIAM J. Numer. Anal. 14 (1977), 1006-1021. Zbl0374.65038 MR458890 · Zbl 0374.65038 · doi:10.1137/0714068
[2] [2] D. N. ARNOLD and F. BREZZI, Mixed and non conforming finite elementmethods: Implementation, postprocessing and error estimates, R.A.R.O. Math. Model, and Num. Anal. (M2AN) 1 (1985), 7-32. Zbl0567.65078 MR813687 · Zbl 0567.65078
[3] [3] D. N. ARNOLD, J. DOUGLAS, Jr., and C. P. GUPTA, A family of higher ordermixed finite element methods for plane elasticity, Numer. Math. 45 (1984), 1-22. Zbl0558.73066 MR761879 · Zbl 0558.73066 · doi:10.1007/BF01379659
[4] [4] G. A. BAKER and J. H. BRAMBLE, Semidiscrete and single step fully discreteapproximations for second order hyperbolic equations, R.A.I.R.O. Anal. Num. 13 (1979), 75-100. Zbl0405.65057 MR533876 · Zbl 0405.65057
[5] [5] B. BRENNER, M. CROUZEIX and V. THOMÉE, Single step methods for inhomogeneous linear differential equations in Banach spaces, R.A.I.R.O. Anal. Num. 16 (1982), 5-26. Zbl0477.65040 MR648742 · Zbl 0477.65040
[6] [6] F. BREZZI, J. DOUGLAS Jr. and L. D MARINI, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217-235. Zbl0599.65072 MR799685 · Zbl 0599.65072 · doi:10.1007/BF01389710
[7] K. BURRAGE, Efficiently implementable algebraically stable Runge-Kutta methods, SIAM J. Numer. Anal. 19 (1982), 245-258. Zbl0483.65040 MR650049 · Zbl 0483.65040 · doi:10.1137/0719015
[8] M. CROUZEIX, Sur l’approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, thèse, Paris (1975).
[9] M. CROUZEIX and P.-A. RAVIART, Approximation des problèmes d’évolution, preprint, Université de Rennes (1980).
[10] V. DOUGALIS and S.M. SERBIN, One some unconditionally stable, higher order methods for numerical solution of the structural dynamics equations, Int. J. Num. Meth. Eng. 18 (1982), 1613-1621. Zbl0488.73087 MR680513 · Zbl 0488.73087 · doi:10.1002/nme.1620181104
[11] E. GEKELER, Discretization Methods for Stable Initial Value Problems, Springer Lecture Notes in Mathematics 1044 (1984), Springer-Verlag, Berlin, Heidelberg, New York. Zbl0518.65050 MR731695 · Zbl 0518.65050 · doi:10.1007/BFb0071438
[12] [12] C. JOHNSON and V. THOMÉE, Error estimates for some mixed finite element methodes for parabolic type problems, R.A.I.R.O. Anal. Num. 15 (1981), 41-78. Zbl0476.65074 MR610597 · Zbl 0476.65074
[13] P.-A., RAVIART and J.M. THOMAS, A mixed finite element method for 2nd order problems, in Mathematical Aspects of the Element Method, Springer Lecture Notes in Mathematics 606 (1977), Springer-Verlag, Berlin-Heidelberg-New York. MR483555 · Zbl 0362.65089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.