zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Differential-difference operators associated to reflection groups. (English) Zbl 0652.33004
Summary: There is a theory of spherical harmonics for measures invariant under a finite reflection group. The measures are products of powers of linear functions, whose zero-sets are the mirrors of the reflections in the group, times the rotation-invariant measure on the unit sphere in n . A commutative set of differential-difference operators, each homogeneous of degree -1, is the analogue of the set of first-order partial derivatives in the ordinary theory of spherical harmonics. In the case of 2 and dihedral groups there are analogues of the Cauchy-Riemann equations which apply to Gegenbauer and Jacobi polynomial expansions.

MSC:
33C55Spherical harmonics
33C45Orthogonal polynomials and functions of hypergeometric type
20F55Reflection groups; Coxeter groups
42C10Fourier series in special orthogonal functions