zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees. (English) Zbl 0652.92019

The nonlinear behavior of a particular Kolmogorov-type exploitation differential equation system assembled by R. M. May [Stability and complexity in model ecosystems. Princeton (1973)] from predator and prey components developed by P. H. Leslie [Biometria 35, 213-245 (1948; Zbl 0034.233)] and C. S. Holling [Mem. Entomol. Soc. Can. 45, 1-60 (1965)], respectively, is re-examined by means of the numerical bifurcation code AUTO 86 with model parameters chosen appropriately for a temperature dependent mite interaction on fruit trees.

The most significant result of this analysis is that, in addition to the temperature ranges over which the single community equilibrium point of the system is either globally stable or gives rise to a globally stable limit cycle, there can also exist a range wherein multiple stable states occur. These stable states consist of a focus (spiral point) and a limit cycle, separated from each other in the phase plane by an unstable limit cycle. The ecological implications of such metastability, hysteresis and threshold behavior for the occurrence of outbreaks, the persistence of oscillations, the resiliency of the system and the biological control of mite populations are discussed.

It is further suggested that a model of this sort which possesses a single community equilibrium point may be more useful for representing outbreak phenomena, especially in the presence of oscillations, than the non-Kolmogorov predator-prey systems possessing three community equilibrium points, two of which are stable and the other a saddle point, traditionally employed for this purpose.

34C05Location of integral curves, singular points, limit cycles (ODE)
65C20Models (numerical methods)