zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Equivalence of smoothing parameter selectors in density and intensity estimation. (English) Zbl 0662.62036
Kernel smoothing is an attractive method for the nonparametric estimation of either a probability density function or the intensity function of a nonstationary Poisson process. In each case the amount of smoothing, controlled by the bandwidth, that is, smoothing parameter, is crucial to the performance of the estimator. Bandwidth selection by cross-validation has been widely studied in the context of density estimation. A bandwidth selector in the intensity estimation case has been proposed that minimizes an estimate of the mean squared error under the assumption that the data are generated by a stationary Cox process. This article shows that these two methods each select the same bandwidth, even though they are motivated in much different ways. In addition, to providing further justification of each method, this equivalence of smoothing parameter selectors yields new insights for both density and intensity estimation.
MSC:
62G05Nonparametric estimation