zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-dimensional magnetohydrodynamic equilibria. (English) Zbl 0662.76139
For the two-dimensional MHD equilibria, the system of ideal MHD equations is reduced to a single nonlinear equation of the magnetic potential as a ‘Sh-Gordon equation’. A set of analytical solutions is presented which are adequate for describing parallel filaments of a diffused magnetized plasma suspended horizontally in equilibrium in a uniform gravitational field.
76W05Magnetohydrodynamics and electrohydrodynamics
76X05Ionized gas flow in electromagnetic fields; plasmic flow
[1]Amann, H.: 1976,J. Diff. Eqns 21, 263. · Zbl 0319.35039 · doi:10.1016/0022-0396(76)90126-1
[2]Bodin, H. B. and Keen B. E: 1977,Rep. Prog. Phys. 40, 1415. · doi:10.1088/0034-4885/40/12/001
[3]Callebaut, D. K. and Khater, A. H.: 1976, in C. Moser (ed.),CECAM Workshop on Plasma Physics Applied to Active Phenomena on the Sun, Orsay, p. 20.
[4]Callebaut, D. K. and Khater, A. H.: 1977a,III Int. Conf. (Kiev), Trieste.
[5]Callebaut, D. K. and Khater, A. H.: 1977b, inVIII Europe Conf. on Controlled Fusion and Plasma Physics, Prague, p. 149.
[6]Callebaut, D. K. and Khater, A. H.: 1979,Bull. Am. Phys. Soc. 24, 948.
[7]Callebaut, D. K. and Khater, A. H.: 1980,Proc. Int. Conf. Plasma Phys. 1, 10bI-01.
[8]El-Sabbagh, M. F.: 1988,Nuovo Cimento (in press).
[9]Grauel, A.: 1985,Physica 132A, 557. · Zbl 0653.35073 · doi:10.1016/0378-4371(85)90027-5
[10]Khater, A. H. and Obied Allah, M. H.: 1984,Astrophys. Space Sci. 106, 245. · Zbl 0582.76048 · doi:10.1007/BF00650352
[11]Khater, A. H., El-Sheikh, M. G., and Callebaut, D. K.: 1988a,Astrophys. Space Sci. 145, 277. · doi:10.1007/BF00642104
[12]Khater, A. H., Callebaut, D. K., and El-Sheikh, M. G.: 1988b,Int. J. Math. Modeling (in press).
[13]Khater, A. H., El-Sabbagh, M. F., and Callebaut, D. K. 1988c,Computers & Math. with Applications (in press).
[14]Khater, A. H., El-Sabbagh, M. F., and Callebaut, D. K.: 1988d,Ann. Soc. Sci. Bruxelles (in press).
[15]Khater, A. H., El-Sabbagh, M. F., and Callebaut, D. K.: 1988e,J. Plasma Phys. (in press).
[16]Lamb, G. L.: 1980,Elements of Soliton Theory, John Wiley and Sons, New York.
[17]Lerche, I. and Low, B. C.: 1982,Physica 4D, 293.
[18]Low, B. C.: 1975,Astrophys. J. 197, 251. · doi:10.1086/153508
[19]Low, B. C., Hundhausen, J. A., and Zweibel, E. G.: 1983,Phys. Fluids 26, 2731. · Zbl 0529.76118 · doi:10.1063/1.864467
[20]Movsesyants, Yu. B.: 1987,Physica 140A, 554. · doi:10.1016/0378-4371(87)90080-X
[21]Steeb, W. H., Kloke, M., Spieker, B. M., and Grensing, D.: 1985,Z. Phys. C 28 241. · doi:10.1007/BF01575729
[22]Webb, G. M.: 1986,Solar Phys. 106, 104. · doi:10.1007/BF00158498
[23]Weiss, J.: 1984,J. Math. Phys. 25, 13. · Zbl 0565.35094 · doi:10.1063/1.526009
[24]Zakharov, V. E., Manakov, S. V., Novikov, S. P., and Petaevzky, L. P.: 1980,Soliton Theory, Nauka, Moscow (in Russian).