zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New examples of harmonic diffeomorphisms of the hyperbolic plane onto itself. (English) Zbl 0669.58012
The authors give an explicit construction of a one-parameter family of nonconformal harmonic diffeomorphisms of the hyperbolic plane. They are realized as the Gauss map of spacelike surfaces of revolution of constant mean curvature in the three-dimensional Minkowski space. A description of the boundary behavior of such harmonic maps is also given.
Reviewer: G.Toth
58E20Harmonic maps between infinite-dimensional spaces
[1]K. AKUTAGAWA and S. NISHIKAWA: The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-space, preprint 1986
[2]R. BARTNIK and L. SIMON: Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys.87, 131-152 (1982) · Zbl 0512.53055 · doi:10.1007/BF01211061
[3]H. I. CHOI and A. TREIBERGS: Gauss map of spacelike constant mean curvature hypersurfaces of Minkowski Space, preprint (1988)
[4]J. HANO and K. NOMIZU: Surfaces of revolution with constant mean curvature in Lorentz-Minkowski Space, TĂ´hoku Math. J.,36, 427-437 (1984) · Zbl 0535.53002 · doi:10.2748/tmj/1178228808
[5]J. JOST: Harmonic maps between surfaces, Lecture Notes in Mathematics1062, Berlin Heidelberg New York: Springer-Verlag 1984
[6]T. K. MILNOR: Harmonic maps and classical surface theory in Minkowski Space, Trans. Amer. Math Soc.280, 161-185 (1983)
[7]E. RUH and J. VILMS: The tension field of the Gauss map, Trans. Amer. Math. Soc.149, 569-573 (1970) · doi:10.1090/S0002-9947-1970-0259768-5
[8]R. SCHOEN and S.-T. YAU: On univalent harmonic maps between surfaces, Invent. Math.44, 265-278 (1978) · Zbl 0388.58005 · doi:10.1007/BF01403164
[9]A. TREIBERGS: Entire Spacelike Hypersurfaces of constant mean curvature in Minkowski Space, Invent. Math.66, 39-56 (1982) · Zbl 0483.53055 · doi:10.1007/BF01404755