zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Spectral properties of cosine operator functions. (English) Zbl 0675.47029
Summary: Let A be the generator of a cosine function C t , t in a Banach space X; we shall connect the existence and uniqueness of a T- periodic mild solution of the equation u '' =Au+f with the spectral property 1ρ(C T ) and, in case X is a Hilbert space, also with spectral properties of A.

MSC:
47D03(Semi)groups of linear operators
34G10Linear ODE in abstract spaces
47D99Algebraic systems of linear operators
References:
[1]Fattorini, H. O.,Ordinary differential equations in linear topological spaces, I. J. Differential Equations5 (1968), 72–105. · Zbl 0175.15101 · doi:10.1016/0022-0396(69)90105-3
[2]Fattorini, H. O.,Ordinary differential equations in linear topological spaces, II. J. Differential Equations6 (1969), 50–70. · Zbl 0181.42801 · doi:10.1016/0022-0396(69)90117-X
[3]Fattorini, H. O.,Uniformly bounded cosine functions in Hilbert spaces. Indiana Univ. Math. J.20 (1970), 411–425. · Zbl 0202.41704 · doi:10.1512/iumj.1970.20.20035
[4]Gearhart, L.,Spectral theory for contraction semi-groups on Hilbert spaces. Trans. Amer. Math. Soc.236 (1978), 385–394. · doi:10.1090/S0002-9947-1978-0461206-1
[5]Herbst, I.,The spectrum of Hilbert space semi-groups. J. Operator Theory,10 (1983), 87–94.
[6]Kisynski, J.,On operator-valued solutions of d’Alembert’s functional equation I. Colloq. Math.23 (1971), 107–114.
[7]Kurepa, S.,A cosine functional equation in Hilbert space. Canad. J. Math.,12 (1960), 45–49. · Zbl 0090.10001 · doi:10.4153/CJM-1960-005-7
[8]Lutz, D.,Strongly continuous operator cosine functions. In:Functional Analysis (Dubrovnik, 1981). (Lecture Notes in Math., Vol. 948), Springer, Berlin–New York, 1982, 73–97.
[9]Nagy, B.,On cosine operator functions on Banach spaces. Acta Sci. Math. (Szeged)36 (1974), 281–290.
[10]Prüss, J.,On the spectrum of C 0-semi-groups. Trans. Amer. Math. Soc.284 2 (1984), 847–857.
[11]Sova, M.,Cosine operator functions. Rozprawy Mat.49 (1966), 1–47.
[12]Tavis, C. C. andWebb, G. F.,Cosine families and abstract non-linear second order differential equations. Acta Math. Acad. Sci. Hung.32 (1978), 75–96. · Zbl 0388.34039 · doi:10.1007/BF01902205
[13]Travis, C. C. andWebb, G. F.,Compactness, regularity and uniform continuity properties of strongly continuous cosine families. Houston J. Math.,3/4 (1977), 555–567.