zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy linear programming models to solve fuzzy matrix games. (English) Zbl 0675.90098
Summary: A zero-sum two-person game with imprecise values in its matrix of payoffs is considered. We propose a method for its solution based on the establishment of a fuzzy linear programming (FLP) problem for each player. The method is shown as a generalization of that conventionally used in the solution of a classical game. To solve such FLP problems we propose the auxiliary models resulting from the application of some of the methods for ranking fuzzy numbers. Hence, according to the kind of of ranking method that players want to use, different solutions to the former game can be obtained. We show that these solutions are of the same nature as the parameters defining the game, and corresponding to a fuzzy predicate that can be established as: “ the value of the game is around v”.

MSC:
91A052-person games
90C05Linear programming
03E72Fuzzy set theory