zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximation by superpositions of a sigmoidal function. (English) Zbl 0679.94019
Summary: In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities that might be implemented by artificial neural networks.

MSC:
94C05Analytic circuit theory
References:
[1][A] R. B. Ash,Real Analysis and Probability, Academic Press, New York, 1972.
[2][BH] E. Baum and D. Haussler, What size net gives valid generalization?,Neural Comput. (to appear).
[3][B] B. Bavarian (ed.), Special section on neural networks for systems and control,IEEE Control Systems Mag.,8 (April 1988), 3–31.
[4][BEHW] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension,Proceedings of the 18th Annual ACM Symposium on Theory of Computing, Berkeley, CA, 1986, pp. 273–282.
[5][BST] L. Brown, B. Schreiber, and B. A. Taylor, Spectral synthesis and the Pompeiu problem,Ann. Inst. Fourier (Grenoble),23 (1973), 125–154.
[6][CD] S. M. Carroll and B. W. Dickinson, Construction of neural nets using the Radon transform, preprint, 1989.
[7][C] G. Cybenko, Continuous Valued Neural Networks with Two Hidden Layers are Sufficient, Technical Report, Department of Computer Science, Tufts University, 1988.
[8][DS] P. Diaconis and M. Shahshahani, On nonlinear functions of linear combinations,SIAM J. Sci. Statist. Comput.,5 (1984), 175–191. · Zbl 0538.41041 · doi:10.1137/0905013
[9][F] K. Funahashi, On the approximate realization of continuous mappings by neural networks,Neural Networks (to appear).
[10][G] L. J. Griffiths (ed.), Special section on neural networks,IEEE Trans. Acoust. Speech Signal Process.,36 (1988), 1107–1190.
[11][HSW] K. Hornik, M. Stinchcombe, and H. White, Multi-layer feedforward networks are universal approximators, preprint, 1988.
[12][HL1] W. Y. Huang and R. P. Lippmann, Comparisons Between Neural Net and Conventional Classifiers, Technical Report, Lincoln Laboratory, MIT, 1987.
[13][HL2] W. Y. Huang and R.P. Lippmann, Neural Net and Traditional Classifiers, Technical Report, Lincoln Laboratory, MIT, 1987.
[14][H] P. J. Huber, Projection pursuit,Ann. Statist.,13 (1985), 435–475. · Zbl 0595.62059 · doi:10.1214/aos/1176349519
[15][J] L. K. Jones, Constructive approximations for neural networks by sigmoidal functions, Technical Report Series, No. 7, Department of Mathematics, University of Lowell, 1988.
[16][K] A. N. Kolmogorov, On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition,Dokl. Akad. Nauk. SSSR,114 (1957), 953–956.
[17][LF] A. Lapedes and R. Farber, Nonlinear Signal Processing Using Neural Networks: Prediction and System Modeling, Technical Report, Theoretical Division, Los Alamos National Laboratory, 1987.
[18][L1] R. P. Lippmann, An introduction to computing with neural nets,IEEE ASSP Mag.,4 (April 1987), 4–22. · doi:10.1109/MASSP.1987.1165576
[19][L2] G. G. Lorentz, The 13th problem of Hilbert, inMathematical Developments Arising from Hilbert’s Problems (F. Browder, ed.), vol. 2, pp. 419–430, American Mathematical Society, Providence, RI, 1976.
[20][MSJ] J. Makhoul, R. Schwartz, and A. El-Jaroudi, Classification capabilities of two-layer neural nets.Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Glasgow, 1989 (to appear).
[21][MP] M. Minsky and S. Papert,Perceptrons, MIT Press, Cambridge, MA, 1969.
[22][N] N. J. Nilsson,Learning Machines, McGraw-Hill, New York, 1965.
[23][P] G. Palm, On representation and approximation of nonlinear systems, Part II: Discrete systems,Biol. Cybernet.,34 (1979), 49–52. · Zbl 0445.93024 · doi:10.1007/BF00336857
[24][R1] W. Rudin,Real and Complex Analysis, McGraw-Hill, New York, 1966.
[25][R2] W. Rudin,Functional Analysis, McGraw-Hill, New York, 1973.
[26][RHM] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland, A general framework for parallel distributed processing, inParallel Distributed Processing: Explorations in the Microstructure of Cognition (D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, eds.), vol. 1, pp. 45–76, MIT Press, Cambridge, MA, 1986.
[27][V] L. G. Valiant, A theory of the learnable,Comm. ACM,27 (1984), 1134–1142. · Zbl 0587.68077 · doi:10.1145/1968.1972
[28][WL] A Wieland and R. Leighton, Geometric analysis of neural network capabilities,Proceedings of IEEE First International Conference on Neural Networks, San Diego, CA, pp. III-385–III-392, 1987.