[1] | [A] R. B. Ash,Real Analysis and Probability, Academic Press, New York, 1972. |

[2] | [BH] E. Baum and D. Haussler, What size net gives valid generalization?,Neural Comput. (to appear). |

[3] | [B] B. Bavarian (ed.), Special section on neural networks for systems and control,IEEE Control Systems Mag.,8 (April 1988), 3–31. |

[4] | [BEHW] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension,Proceedings of the 18th Annual ACM Symposium on Theory of Computing, Berkeley, CA, 1986, pp. 273–282. |

[5] | [BST] L. Brown, B. Schreiber, and B. A. Taylor, Spectral synthesis and the Pompeiu problem,Ann. Inst. Fourier (Grenoble),23 (1973), 125–154. |

[6] | [CD] S. M. Carroll and B. W. Dickinson, Construction of neural nets using the Radon transform, preprint, 1989. |

[7] | [C] G. Cybenko, Continuous Valued Neural Networks with Two Hidden Layers are Sufficient, Technical Report, Department of Computer Science, Tufts University, 1988. |

[8] | [DS] P. Diaconis and M. Shahshahani, On nonlinear functions of linear combinations,SIAM J. Sci. Statist. Comput.,5 (1984), 175–191. · Zbl 0538.41041 · doi:10.1137/0905013 |

[9] | [F] K. Funahashi, On the approximate realization of continuous mappings by neural networks,Neural Networks (to appear). |

[10] | [G] L. J. Griffiths (ed.), Special section on neural networks,IEEE Trans. Acoust. Speech Signal Process.,36 (1988), 1107–1190. |

[11] | [HSW] K. Hornik, M. Stinchcombe, and H. White, Multi-layer feedforward networks are universal approximators, preprint, 1988. |

[12] | [HL1] W. Y. Huang and R. P. Lippmann, Comparisons Between Neural Net and Conventional Classifiers, Technical Report, Lincoln Laboratory, MIT, 1987. |

[13] | [HL2] W. Y. Huang and R.P. Lippmann, Neural Net and Traditional Classifiers, Technical Report, Lincoln Laboratory, MIT, 1987. |

[14] | [H] P. J. Huber, Projection pursuit,Ann. Statist.,13 (1985), 435–475. · Zbl 0595.62059 · doi:10.1214/aos/1176349519 |

[15] | [J] L. K. Jones, Constructive approximations for neural networks by sigmoidal functions, Technical Report Series, No. 7, Department of Mathematics, University of Lowell, 1988. |

[16] | [K] A. N. Kolmogorov, On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition,Dokl. Akad. Nauk. SSSR,114 (1957), 953–956. |

[17] | [LF] A. Lapedes and R. Farber, Nonlinear Signal Processing Using Neural Networks: Prediction and System Modeling, Technical Report, Theoretical Division, Los Alamos National Laboratory, 1987. |

[18] | [L1] R. P. Lippmann, An introduction to computing with neural nets,IEEE ASSP Mag.,4 (April 1987), 4–22. · doi:10.1109/MASSP.1987.1165576 |

[19] | [L2] G. G. Lorentz, The 13th problem of Hilbert, inMathematical Developments Arising from Hilbert’s Problems (F. Browder, ed.), vol. 2, pp. 419–430, American Mathematical Society, Providence, RI, 1976. |

[20] | [MSJ] J. Makhoul, R. Schwartz, and A. El-Jaroudi, Classification capabilities of two-layer neural nets.Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Glasgow, 1989 (to appear). |

[21] | [MP] M. Minsky and S. Papert,Perceptrons, MIT Press, Cambridge, MA, 1969. |

[22] | [N] N. J. Nilsson,Learning Machines, McGraw-Hill, New York, 1965. |

[23] | [P] G. Palm, On representation and approximation of nonlinear systems, Part II: Discrete systems,Biol. Cybernet.,34 (1979), 49–52. · Zbl 0445.93024 · doi:10.1007/BF00336857 |

[24] | [R1] W. Rudin,Real and Complex Analysis, McGraw-Hill, New York, 1966. |

[25] | [R2] W. Rudin,Functional Analysis, McGraw-Hill, New York, 1973. |

[26] | [RHM] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland, A general framework for parallel distributed processing, inParallel Distributed Processing: Explorations in the Microstructure of Cognition (D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, eds.), vol. 1, pp. 45–76, MIT Press, Cambridge, MA, 1986. |

[27] | [V] L. G. Valiant, A theory of the learnable,Comm. ACM,27 (1984), 1134–1142. · Zbl 0587.68077 · doi:10.1145/1968.1972 |

[28] | [WL] A Wieland and R. Leighton, Geometric analysis of neural network capabilities,Proceedings of IEEE First International Conference on Neural Networks, San Diego, CA, pp. III-385–III-392, 1987. |