zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Continuous and discrete wavelet transforms. (English) Zbl 0683.42031
Summary: This paper is an expository survey of results on integral representations and discrete sum expansions of functions in L 2 () in terms of coherent states. Two types of coherent states are considered: Weyl- Heisenberg coherent states, which arise from translations and modulations of a single function, and affine coherent states, called “wavelets”, which arise as translations and dilations of a single function. In each case it is shown how to represent any function in L 2 () as a sum or integral of these states. Most of the paper is a survey of literature, most notably the work of I. Daubechies, A. Grossmann, and J. Morlet. A few results of the authors are included.

MSC:
42C40Wavelets and other special systems
42A38Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type