zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some general existence principles in the Carathéodory theory of nonlinear differential systems. (English) Zbl 0687.34009

Some general existence principles for a system of nonlinear differential equations of the form y (k) =f(x,y,···,y (k-1) subject to certain affine or more general nonlinear boundary conditions are established. When f is continuous, solutions are classical solutions, while when f is Carathéodory solutions are in appropriate Sobolev spaces. The principal features of the three part paper are: Existence principles of fixed point type are developed in Part I. Methods based on topological transversality are used. In particular, a convenient nonlinear alternative is employed. Applications to the Cauchy problem, Dirichlet problem, and periodic problem for systems are given in Part II. Certain singular systems are also considered. Part III develops existence principles of coincidence type. The theoretical development, which relies on topological transversality and avoids degree and coincidence degree considerations, is simpler than a degree theoretic approach. Applications to Neumann and periodic problems are given.

When existence principles are established, both the classical and Carathéodory problems are treated simultaneously in a classical setting. This is accomplished by replacing the boundary value problem by an equivalent integral-differential equation and applying the topological methods in the integral equations setting. Despite the fact that Sobolev spaces are not used explicitly, given existence, solutions automatically lie in the expected Sobolev space.

Reviewer: R.B.Guenther

MSC:
34A34Nonlinear ODE and systems, general