zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions. (English) Zbl 0687.53010
The existence of certain triply periodic minimal surfaces in 3 previously obtained by A. Schoen (and of more such surfaces) is proved by considering conjugate polygonal Plateau problems. Deformations of these to triply periodic constant mean curvature surfaces are obtained by solving a conjugate Plateau problem in S 3 . The corresponding polygons in S 3 have edges on parallel geodesics where the Euclidean polygons have parallel edges. Also new compact embedded minimal surfaces in S 3 are obtained by this method. For many of the Euclidean minimal surfaces explicit Weierstrass representations are derived.
Reviewer: U.Pinkall

MSC:
53A10Minimal surfaces, surfaces with prescribed mean curvature
53C42Immersions (differential geometry)
References:
[1]Schoen, A.H.: Infinite periodic minimal surfaces without selfintersections. NASA Technical Note No. TN D-5541 (1970)
[2]Anderson, D.: Studies in the Microstructure of Microemulsions. PhD thesis, University of Minnesota, June 1986
[3]Andersson, S., Hyde, S.T., Larsson, K., Lidin, S.: Minimal Surfaces and Structures: From Inorganic and Metal Crystals to Cell Membranes and Biopolymers. Chemical Reviews88, 221-242 (1988) · doi:10.1021/cr00083a011
[4]Fischer, W., Koch, E.: On 3-periodic minimal surfaces. Zeitschrift für Kristallographie179, 31-52 (1987) and Galleys 1988 · Zbl 0684.53010 · doi:10.1524/zkri.1987.179.1-4.31
[5]Hyde, S.: Infinite periodic minimal surfaces and crystal structures. PhD thesis, Dept. of Physics, Monash University, March 1986
[6]Darboux, G.: Théorie Générale des Surface I. Gauthier-Villars, Paris 1887
[7]Karcher, H., Pinkall, U., Sterling, I.: New Minimal Surfaces in S3. Preprint 86-27 Max-Planck-Institut f. Mathematik, Bonn. Submitted JDG 1986
[8]Lawson, B.H.: Complete Minimal Surfaces in S3. Annals of Math.92, 335-374 (1970) · Zbl 0205.52001 · doi:10.2307/1970625
[9]Nitsche, J.C.C.: Über ein verallgemeinertes Dirichletsches Problem für die Minimalflächengleichung und hebbare Unstetigkeiten ihrer Lösungen. Math. Ann.158, 203-214 (1965) · Zbl 0141.09601 · doi:10.1007/BF01360040
[10]Neovius, E.R.: Bestimmung Zweier Specieller Periodischer Minimalflächen. Helsingfors 1883
[11]Nagano, T., Smyth, B.: Periodic Minimal Surfaces and Weyl Groups. Acta Math.145, 1-27 (1980) · Zbl 0449.53042 · doi:10.1007/BF02414183
[12]Osserman, R.: Global Properties of Minimal Surfaces in E3 and En. Ann. of Math.80, 340-364 (1964) · Zbl 0134.38502 · doi:10.2307/1970396
[13]Schwarz, H.A.: Gesammelte Mathematische Abhandlungen. Springer, Berlin 1890
[14]Smyth, B.: Stationary minimal surfaces with boundary on a simplex. Invent. Math.76, 411-420 (1984) · Zbl 0538.53010 · doi:10.1007/BF01388467
[15]Wohlgemuth, M.: Abelsche Minimalflächen. Diplomarbeit, Bonn 1988