zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics. I: Surface approximations and partial derivative estimates. (English) Zbl 0692.76003
Summary: We present a powerful, enhanced multiquadrics (MQ) scheme developed for spatial approximations. MQ is a true scattered data, grid free scheme for representing surfaces and bodies in an arbitrary number of dimensions. It is continuously differentiable and integrable and is capable of representing functions with steep gradients with very high accuracy. Monotonicity and convexity are observed properties as a result of such high accuracy. Numerical results show that our modified MQ scheme is an excellent method not only for very accurate interpolation, but also for partial derivative estimates. MQ is applied to a higher order arbitrary Lagrangian-Eulerian (ALE) rezoning. In the second paper of this series, MQ is applied to parabolic, hyperbolic and elliptical partial differential equations. The parabolic problem uses an implicit time- marching scheme whereas the hyperbolic problems uses an explicit time- marching scheme. We show that MQ is also exceptionally accurate and efficient.

MSC:
76A99Foundations, constitutive equations, rheology
76M99Basic methods in fluid mechanics
65Z05Applications of numerical analysis to physics