zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonconvex separation theorems and some applications in vector optimization. (English) Zbl 0692.90063
Separation theorems for an arbitrary set and a not necessarily convex set in a linear topological space are proved and applied to vector optimization. Scalarization results for weakly efficient points and properly efficient points are deduced.
MSC:
90C29Multi-objective programming; goal programming
46A20Duality theory of topological linear spaces
90C48Programming in abstract spaces
References:
[1]Nehse, R.,A New Concept of Separation, Commentationes Mathematicae Universitatis Carolinae, Vol. 22, pp. 169-179, 1981.
[2]Hildenbrandt, R.,Trennung von Mengen und Dualität Nichtkonvexer Optimierungsprobleme, Technische Hochschule Ilmenau, Dissertation A, 1982.
[3]Jahn, J.,Scalarization in Vector Optimization, Mathematical Programming, Vol. 29, pp. 203-218, 1984. · Zbl 0539.90093 · doi:10.1007/BF02592221
[4]Weidner, P.,Dominanzmengen und Optimalitätsbegriffe in der Vektoroptimierung, Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau, Vol. 31, pp. 133-146, 1985.
[5]Weidner, P.,Charakterisierung von Mengen Effizienter Elemente in Linearen Räumen auf der Grundlage Allgemeiner Bezugsmengen, Martin-Luther-Universität Halle-Wittenberg, Dissertation A, 1985.
[6]Henig, M. I.,Proper Efficiency with Respect to Cones, Journal of Optimization Theory and Applications, Vol. 36, pp. 387-407, 1982. · Zbl 0452.90073 · doi:10.1007/BF00934353
[7]Lampe, U.,Dualität und Eigentliche Effizienz in der Vektoroptimierung, Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin, No. 57, pp. 45-54, 1981.
[8]Jahn, J.,Mathematical Vector Optimization in Partially Ordered Linear Spaces, Peter Lang, Frankfurt am Main, Germany, 1986.
[9]Kantorowitsch, L. W., andAkilow, G. P.,Funktionalanalysis in Normierten Räumen, Akademie-Verlag, Berlin, Germany, 1978.
[10]Gerstewitz, C., andIwanow, E.,Dualität für Nichtkonvexe Vektoroptimierungsprobleme, Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau, Vol. 31, pp. 61-81, 1985.
[11]Holmes, R. B.,Geometric Functional Analysis and Its Applications, Springer, New York, New York, 1975.
[12]Gerstewitz, C.,Nichtkonvexe Trennungssätze und Deren Anwendung in der Theorie der Vektoroptimierung, Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin, No. 80, pp. 19-31, 1986.
[13]Yu, P. L.,Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives, Journal of Optimization Theory and Applications, Vol. 14, pp. 319-377, 1974. · Zbl 0268.90057 · doi:10.1007/BF00932614
[14]Weidner, P.,Extensions of the Feasible Range Leaving Invariant the Efficient Point Set, Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin, No. 85, pp. 137-147, 1986.
[15]Weidner, P.,On the Characterization of Efficient Points by Means of Monotone Functionals, Optimization, Vol. 19, pp. 53-69, 1988. · Zbl 0659.90079 · doi:10.1080/02331938808843317
[16]Weidner, P.,Monotone Funktionale, Dualkegel und Effiziente Elemente, Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin, No. 80, pp. 110-120, 1986.
[17]Weidner, P.,The Influence of Neglecting Feasible Points and of Varying Preferences on the Efficient Point Set, Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau, Vol. 33, pp. 181-188, 1987.
[18]Weidner, P.,Complete Efficiency and Interdependencies between Objective Functions in Vector Optimization, Zeitschrift für Operations Research, Vol. 34, pp. 91-115, 1990.
[19]Bernau, H.,Interactive Methods for Vector Optimization, Optimization in Mathematical Physics, Edited by B. Brosowski and E. Martensen, Peter Lang, Frankfurt am Main, Germany, pp. 21-36, 1987.
[20]Brosowski, B.,A Criterion for Efficiency and Some Applications, Optimization in Mathematical Physics, Edited by B. Brosowski and E. Martensen, Peter Lang, Frankfurt am Main, Germany, pp. 37-59, 1987.
[21]Bitran, G. R., andMagnanti, T. L.,The Structure of Admissible Points with Respect to Cone Dominance, Journal of Optimization Theory and Applications, Vol. 29, pp. 573-614, 1979. · Zbl 0389.52021 · doi:10.1007/BF00934453
[22]Schönfeld, P.,Some Duality Theorems for the Nonlinear Vector Maximum Problem, Unternehmensforschung, Vol. 14, pp. 51-63, 1970. · Zbl 0194.20401 · doi:10.1007/BF01918249
[23]Elster, K. H., andGöpfert, A.,Recent Results on Duality in Vector Optimization, Recent Advances and Historical Development of Vector Optimization, Edited by J. Jahn and W. Krabs, Springer, Berlin, Germany, pp. 129-136, 1987.