zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
One warehouse multiple retailer systems with vehicle routing costs. (English) Zbl 0694.90044

Summary: We consider distribution systems with a depot and many geographically dispersed retailers each of which faces external demands occurring at constant, deterministic but retailer specific rates. All stock enters the system through the depot from where it is distributed to the retailers by a fleet of capacitated vehicles combining deliveries into efficient routes. Inventories are kept at the retailers but not at the depot.

We wish to determine feasible replenishmnt strategies (i.e., inventory rules and routing patterns) minimising (infinite horizon) long-run average transportation and inventory costs. We restrict ourselves to a class of strategies in which a collection of regions (sets of retailers) is specified which cover all outlets: if an outlet belongs to several regions, a specific fraction of its sales/operations is assigned to each of these regions. Each time one of the retailers in a given region receives a delivery, this delivery is made by a vehicle who visits all other outlets in the region as well (in an efficient route).

We describe a class of low complexity heuristics and show under mild probabilistic assumptions that the generated solutions are asymptotically optimal (within the above class of strategies). We also show that lower and upper bounds on the system-wide costs may be computed and that these bounds are asymptotically tight under the same assumptions. A numerical study exhibits the performance of these heuristics and bounds for problems of moderate size.

MSC:
90B05Inventory, storage, reservoirs